Question -> Frog Jump
class Solution {
public static int frogJump(int n, int heights[]) {
return jump(n-1, heights);
}
public static int jump(int n, int[] heights) {
if(n == 0) return 0;
int oneStep = jump(n-1, heights) + Math.abs(heights[n]-heights[n-1]);
int twoStep = Integer.MAX_VALUE;
if(n > 1) {
twoStep = jump(n-2, heights) + Math.abs(heights[n]-heights[n-2]);
}
return Math.min(oneStep, twoStep);
}
}
Recurrence Relation
: T(n) = T(n-1)+T(n-2)+c
Time Complexity
: O(2N)
Space Complexity
: O(N)
class Solution {
public static int frogJump(int n, int heights[]) {
int[] dp = new int[n];
return frogJump(n-1, heights, dp);
}
public static int frogJump(int n, int[] heights, int[] dp) {
if(n == 0) return 0;
if(dp[n] != 0) return dp[n];
int oneStep = frogJump(n-1, heights, dp) + Math.abs(heights[n]-heights[n-1]);
int twoStep = Integer.MAX_VALUE;
if(n > 1) {
twoStep = frogJump(n-2, heights, dp) + Math.abs(heights[n]-heights[n-2]);
}
dp[n] = Math.min(oneStep, twoStep);
return dp[n];
}
}
Time Complexity
: O(N)
Space Complexity
: O(N)+O(N), for Recursion Stack and dp array
class Solution {
public static int frogJump(int n, int heights[]) {
int[] dp = new int[n];
dp[0] = 0;
for(int i=1; i<n; i++) {
int oneStep = dp[i-1] + Math.abs(heights[i]-heights[i-1]);
int twoStep = Integer.MAX_VALUE;
if(i > 1) {
twoStep = dp[i-2] + Math.abs(heights[i]-heights[i-2]);
}
dp[i] = Math.min(oneStep, twoStep);
}
return dp[n-1];
}
}
Time Complexity
: O(N)
Space Complexity
: O(N)
class Solution {
public static int frogJump(int n, int heights[]) {
int prev1 = 0, prev2 = 0;
for(int i=1; i<n; i++) {
int oneStep = prev1 + Math.abs(heights[i]-heights[i-1]);
int twoStep = Integer.MAX_VALUE;
if(i > 1) {
twoStep = prev2 + Math.abs(heights[i]-heights[i-2]);
}
int curr = Math.min(oneStep, twoStep);
prev2 = prev1;
prev1 = curr;
}
return prev1;
}
}
Time Complexity
: O(N)
Space Complexity
: O(1)
Video Explanations -> Frog Jump