-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpart2.py
248 lines (208 loc) · 6.94 KB
/
part2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
import argparse
import torch
import torchvision
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import time
parser = argparse.ArgumentParser(description="Train a simple CNN on MNIST")
parser.add_argument(
"--batch-size",
type=int,
default=64,
help="Batch size for training and testing (default: 64)",
)
parser.add_argument(
"--epochs", type=int, default=1, help="Number of epochs to train (default: 1)"
)
parser.add_argument(
"--log-interval",
type=int,
default=100,
help="How many batches to wait before logging training status (default: 100)",
)
parser.add_argument(
"--kernel-size",
type=int,
default=3,
help="Kernel size for all convolution layers (default: 3)",
)
parser.add_argument(
"--filter1",
type=int,
default=16,
help="Number of output channels in the 1st convolution layers (default: 16)",
)
parser.add_argument(
"--filter2",
type=int,
default=32,
help="Number of output channels in the 2nd convolution layers (default: 32)",
)
parser.add_argument(
"--filter3",
type=int,
default=16,
help="Number of output channels in the 3rd convolution layers (default: 16)",
)
args = parser.parse_args()
n_epochs = args.epochs # Number of Epochs for training
batch_size = args.batch_size # Batch size for training and testing
log_interval = (
args.log_interval
) # This variable manages how frequently do you want to print the training loss
kernel_size = args.kernel_size
f1 = args.filter1
f2 = args.filter2
f3 = args.filter3
####################################################################
# Avoid changing the below parameters
learning_rate = 0.01
momentum = 0.5
random_seed = 1
torch.backends.cudnn.enabled = False
torch.manual_seed(random_seed)
####################################################################
# Train loader and test loader for the MNIST dataset
# This part of the code will download the MNIST dataset in the
# same directory as this script. It will normalize the dataset and batch
# it into the batch size specified by batch_size var.
train_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./",
train=True,
download=True,
transform=torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,)),
]
),
),
batch_size=batch_size,
shuffle=True,
)
test_loader = torch.utils.data.DataLoader(
torchvision.datasets.MNIST(
"./",
train=False,
download=True,
transform=torchvision.transforms.Compose(
[
torchvision.transforms.ToTensor(),
torchvision.transforms.Normalize((0.1307,), (0.3081,)),
]
),
),
batch_size=batch_size,
shuffle=True,
)
####################################################################
# TODO: Define your model here
# See the example MLP linked in the lab document for help.
class SimpleCNN(nn.Module):
def __init__(self):
super(SimpleCNN, self).__init__()
# MNIST has 1 input channel (grayscale)
self.conv1 = nn.Conv2d(
in_channels=1, out_channels=f1, kernel_size=kernel_size, padding=1
)
self.conv2 = nn.Conv2d(
in_channels=f1, out_channels=f2, kernel_size=kernel_size, padding=1
)
self.conv3 = nn.Conv2d(
in_channels=f2, out_channels=f3, kernel_size=kernel_size, padding=1
)
# pooling after every conv reduces spatial size
# e.g., 28*28 => 14*14
# final feature map has size [batch, f3, 3, 3]
self.fc = nn.Linear(f3 * 9, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.max_pool2d(x, 2) # 28*28 -> 14*14
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2) # 14*14 -> 7*7
x = F.relu(self.conv3(x))
x = F.max_pool2d(x, 2) # 7*7 -> 3*3 (floor)
x = x.view(x.size(0), -1) # flatten
logits = self.fc(x)
return logits
network = SimpleCNN()
# Using the SGD (Stochastic Gradient Descent) optimizer
optimizer = optim.SGD(network.parameters(), lr=learning_rate, momentum=momentum)
train_losses = []
train_counter = []
test_losses = []
####################################################################
# Train and test methods for training the model
def train(epoch):
network.train()
total_training_time = 0
for batch_idx, (data, target) in enumerate(train_loader):
batch_start_time = time.time()
optimizer.zero_grad()
output = network(data)
loss = F.nll_loss(output, target)
loss.backward()
optimizer.step()
batch_end_time = time.time()
total_training_time += batch_end_time - batch_start_time
if batch_idx % log_interval == 0:
print(
"Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
epoch,
batch_idx * len(data),
len(train_loader.dataset),
100.0 * batch_idx / len(train_loader),
loss.item(),
)
)
train_losses.append(loss.item())
train_counter.append(
(batch_idx * 64) + ((epoch - 1) * len(train_loader.dataset))
)
return total_training_time
def test():
network.eval()
test_loss = 0
correct = 0
with torch.no_grad():
for data, target in test_loader:
output = network(data)
test_loss += F.nll_loss(output, target, size_average=False).item()
pred = output.data.max(1, keepdim=True)[1]
correct += pred.eq(target.data.view_as(pred)).sum()
test_loss /= len(test_loader.dataset)
test_losses.append(test_loss)
print(
"\nTest set: Avg. loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
test_loss,
correct,
len(test_loader.dataset),
100.0 * correct / len(test_loader.dataset),
)
)
####################################################################
# Train the model for given epochs
total_time = 0
for epoch in range(1, n_epochs + 1):
time_per_epoch = train(epoch)
total_time = total_time + time_per_epoch
test()
print("Total Training time: {}".format(total_time))
####################################################################
# Single inference
with torch.no_grad():
test_iterator = iter(test_loader)
data, target = next(test_iterator)
single_batch_start = time.time()
# Run single inference for 1000 times to avoid measurement overheads
for i in range(0, 1000):
output = network(data)
single_batch_end = time.time()
single_batch_inf_time = (single_batch_end - single_batch_start) / 1000
print(
"Single Batch Inference time is {} seconds for a batch size of {}".format(
single_batch_inf_time, test_loader.batch_size
)
)