-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtable_gen.py
55 lines (41 loc) · 1.71 KB
/
table_gen.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
import onnx
import onnxruntime
import numpy as np
import pandas as pd
# Load the ONNX model
model_path = "onnx_models/resnet_simplified.onnx"
model = onnx.load(model_path)
# Helper function to get tensor shape
def get_tensor_shape(value_info):
return [dim.dim_value for dim in value_info.type.tensor_type.shape.dim]
# Create a dictionary to map tensor names to their shapes
tensor_shapes = {}
for value_info in model.graph.value_info:
tensor_shapes[value_info.name] = get_tensor_shape(value_info)
# Add input and output tensors to the dictionary
for input in model.graph.input:
tensor_shapes[input.name] = get_tensor_shape(input)
for output in model.graph.output:
tensor_shapes[output.name] = get_tensor_shape(output)
# Iterate over layers and extract convolutional details
conv_layers = []
for node in model.graph.node:
if node.op_type == "Conv":
layer_name = node.name if node.name else f"Conv_{len(conv_layers)}"
# Get input and output shapes
input_shape = tensor_shapes.get(node.input[0], "Unknown")
output_shape = tensor_shapes.get(node.output[0], "Unknown")
# Extract weight tensor details
weight_shape = None
for initializer in model.graph.initializer:
if initializer.name == node.input[1]: # Find corresponding weight tensor
weight_shape = list(initializer.dims)
break
conv_layers.append([layer_name, input_shape, output_shape, weight_shape])
# Print extracted information
df = pd.DataFrame(conv_layers, columns=["Layer Name", "Input Shape", "Output Shape", "Weight Shape"])
print(df)
latex_code = df.to_latex(index=False)
print(latex_code)
with open("table.tex", "w") as fh:
fh.write(latex_code)