Skip to content

Commit 7bea931

Browse files
2 parents c90f6f9 + 487ea7a commit 7bea931

File tree

7 files changed

+59
-10
lines changed

7 files changed

+59
-10
lines changed

.github/workflows/discord_notification.yml

+6-4
Original file line numberDiff line numberDiff line change
@@ -10,16 +10,18 @@ jobs:
1010

1111
- name: Send Discord notification to Server 1
1212
env:
13-
WEBHOOK_URL_1: ${{ secrets.WEBHOOK_URL }}
13+
DISCORD_WEBHOOK_ID: ${{ secrets.DISCORD_WEBHOOK_ID }}
14+
DISCORD_WEBHOOK_TOKEN: ${{ secrets.DISCORD_WEBHOOK_TOKEN }}
1415
run: |
1516
COMMIT_MESSAGE=$(git log -1 --pretty=format:"%s")
1617
COMMIT_DESCRIPTION=$(git log -1 --pretty=format:"%b")
17-
curl -X POST -H "Content-Type: application/json" -d "{ \"content\": \"New commit! Check out the latest changes: https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net/commits/${{ github.sha }}\", \"embeds\": [ { \"title\": \"$COMMIT_MESSAGE\", \"description\": \"$COMMIT_DESCRIPTION\" } ] }" $WEBHOOK_URL
18+
curl -X POST -H "Content-Type: application/json" -d "{ \"content\": \"New commit! Check out the latest changes: https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net/commits/${{ github.sha }}\", \"embeds\": [ { \"title\": \"$COMMIT_MESSAGE\", \"description\": \"$COMMIT_DESCRIPTION\" } ] }" https://discord.com/api/webhooks/$DISCORD_WEBHOOK_ID/$DISCORD_WEBHOOK_TOKEN
1819
1920
- name: Send Discord notification to Server 2
2021
env:
21-
WEBHOOK_URL_2: ${{ secrets.URC_WEBHOOK_URL }}
22+
URC_WEBHOOK_ID: ${{ secrets.URC_WEBHOOK_ID }}
23+
URC_WEBHOOK_TOKEN: ${{ secrets.URC_WEBHOOK_TOKEN }}
2224
run: |
2325
COMMIT_MESSAGE=$(git log -1 --pretty=format:"%s")
2426
COMMIT_DESCRIPTION=$(git log -1 --pretty=format:"%b")
25-
curl -X POST -H "Content-Type: application/json" -d "{ \"content\": \"New commit! Check out the latest changes: https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net/commits/${{ github.sha }}\", \"embeds\": [ { \"title\": \"$COMMIT_MESSAGE\", \"description\": \"$COMMIT_DESCRIPTION\" } ] }" $URC_WEBHOOK_URL
27+
curl -X POST -H "Content-Type: application/json" -d "{ \"content\": \"New commit! Check out the latest changes: https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net/commits/${{ github.sha }}\", \"embeds\": [ { \"title\": \"$COMMIT_MESSAGE\", \"description\": \"$COMMIT_DESCRIPTION\" } ] }" https://discord.com/api/webhooks/$URC_WEBHOOK_ID/$URC_WEBHOOK_TOKEN

CNN_Tensor_files/CNN Tensor Creation.ipynb

+1
Original file line numberDiff line numberDiff line change
@@ -56,6 +56,7 @@
5656
" 'networkx'\n",
5757
"]\n",
5858
"\n",
59+
"\n",
5960
"for lib in libraries:\n",
6061
" try:\n",
6162
" module = importlib.import_module(lib)\n",

Phase Space/requirements.txt

+11-1
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,13 @@
11
numpy==1.24.3
22
matplotlib==3.7.0
3-
minepy==b'1.2.6'
3+
scipy==1.10.1
4+
torch==2.0.1+cu117
5+
torchdiffeq==0.2.3
6+
torchsummary
7+
minepy==1.2.6
8+
pyrqa
9+
pyts==0.12.0
10+
MFDFA==0.4.3
11+
pyinform
12+
graphviz==0.20.1
13+
networkx==3.0

Quantum Analysis/requirements.txt

+10
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,13 @@
11
numpy==1.24.3
22
matplotlib==3.7.0
33
scipy==1.10.1
4+
torch==2.0.1+cu117
5+
torchdiffeq==0.2.3
6+
torchsummary
7+
minepy==1.2.6
8+
pyrqa
9+
pyts==0.12.0
10+
MFDFA==0.4.3
11+
pyinform
12+
graphviz==0.20.1
13+
networkx==3.0

Readme.md

+12-5
Original file line numberDiff line numberDiff line change
@@ -14,8 +14,11 @@
1414
<img src="https://img.shields.io/badge/TikTok-%40metaversecrowdsourcebr-ff0080?style=for-the-badge&logo=tiktok&logoColor=white&labelColor=000000" alt="TikTok Profile">
1515
</a>
1616
</div>
17-
18-
17+
<div align="center">
18+
<a href="https://discord.gg/mJECK72VhD">
19+
<img src="https://img.shields.io/static/v1?label=Unlimited%20Research%20Cooperative&message=Join%20Now&color=7289DA&logo=discord&style=for-the-badge" alt="Discord server">
20+
</a>
21+
</div>
1922
<br>
2023
<br>
2124
<h1 align="center">Purpose</h1>
@@ -34,8 +37,6 @@ Accurately predicting the brain's reactions to tES could enable us to fine-tune
3437
This research could potentially contribute to the ambitious goal of directly stimulating sensorial perceptions in the human brain[3][4], a feat which, if achieved, would revolutionize neuroprosthetics and human-computer interfaces. The brain's sensorial system is intricate, involving a complex network of interconnected regions responsible for processing and interpreting different aspects of sensory information. The endeavor to predict EEG effects of tES using a multidisciplinary approach could shed light on how this complex system responds to external stimulation, and could possibly inform targeted, controlled stimulation techniques. While the research is not directly aimed at inducing visual perceptions, the insights and methodologies derived from the work could serve as a stepping stone towards understanding how to interface with the brain's sensory nervous system more effectively. It's crucial to note that this potential application would need to address substantial scientific, technical, and ethical challenges. Despite these hurdles, the promise of such a breakthrough underscores the broad-reaching implications of our research and its potential to catalyze advances in several areas of neuroscience and neurotechnology.
3538

3639
This research could contribute significantly to the field of decoding and encoding sensory perceptions in the human brain. The proposed model, which integrates chaos theory, dynamical systems theory, and a neural network stack, could provide a robust and comprehensive tool for understanding how the brain responds to tES. Such an understanding is critical for decoding brain activity associated with sensual perception. Specifically, the proposed use of transfer entropy to measure causal relationships within the brain could provide unique insights into how different sensory regions interact and coordinate to produce perceptions. Once these perceptions are decoded[5], it becomes theoretically possible to encode similar patterns back into the brain. The development of a predictive model capable of accurately capturing these dynamics would be a pivotal step towards this goal. Thus, while the immediate focus of the research is predicting EEG effects of tES, the methodologies and insights derived from the work have broader implications and could be foundational for future efforts aimed at decoding and encoding sensual perceptions in the brain.
37-
38-
encoding sensual perceptions in the brain.
3940
<br>
4041
<br>
4142
<h1 align="center">How to use the code</h1>
@@ -98,13 +99,19 @@ Data include within participant application of nine High-Definition tES (HD-tES)
9899

99100
Participants maintained a ball at the center of the screen and were periodically stimulated (with low-intensity noninvasive brain stimulation) for 30 secs with combinations of 9 stimulation montages.
100101

102+
103+
**Our Research Report:** [Artificial Intelligence for EEG Prediction: Applied Chaos Theory](https://static1.squarespace.com/static/633b0228f2e6e5632a4aa432/t/6526b39fef593d19878d0b44/1697036259969/Artificial+Intelligence+for+EEG+Prediction%3A+Applied+Chaos+Theory.pdf)
104+
101105
**Dataset Article:** [https://doi.org/10.1038/s41597-021-01046-y](https://doi.org/10.1038/s41597-021-01046-y)
102106

103107
**Dataset:** [https://zenodo.org/record/3840615#.ZK2hJdLMKRQ](https://zenodo.org/record/3840615#.ZK2hJdLMKRQ)
104108

105109
**Table of stimulation condition and stimulation intensity:** [https://www.nature.com/articles/s41597-021-01046-y/tables/2](https://www.nature.com/articles/s41597-021-01046-y/tables/2)
106110
<br>
107111
<br>
112+
S. Syrup and Metaverse Crowdsource, “Artificial Intelligence for EEG Prediction: Applied Chaos Theory,” Unlimited Research Cooperative, 2023, doi: 10.13140/RG.2.2.30204.51849.
113+
<br>
114+
<br>
108115
N. Gebodh, Z. Esmaeilpour, A. Datta, and M. Bikson, "Dataset of Concurrent EEG, ECG, and Behavior with Multiple Doses of Transcranial Electrical Stimulation," Scientific Data, vol. 8, no. 1, p. 274, 2021.
109116
<br>
110117
<br>
@@ -129,5 +136,5 @@ N. Gebodh, Z. Esmaeilpour, A. Datta, and M. Bikson, "Dataset of Concurrent EEG,
129136
<br>
130137
<br>
131138

132-
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">EEG-Chaos-Kuramoto-Neural-Net</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net" property="cc:attributionName" rel="cc:attributionURL">Metaverse Crowdsource</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net" rel="dct:source">https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net</a>.<br />Permissions beyond the scope of this license may be available at <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net" rel="cc:morePermissions">https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net</a>.
139+
<a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/"><img alt="Creative Commons License" style="border-width:0" src="https://i.creativecommons.org/l/by-sa/4.0/88x31.png" /></a><br /><span xmlns:dct="http://purl.org/dc/terms/" property="dct:title">EEG-Chaos-Kuramoto-Neural-Net</span> by <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net" property="cc:attributionName" rel="cc:attributionURL">Metaverse Crowdsource</a> is licensed under a <a rel="license" href="http://creativecommons.org/licenses/by-sa/4.0/">Creative Commons Attribution-ShareAlike 4.0 International License</a>.<br />Based on a work at <a xmlns:dct="http://purl.org/dc/terms/" href="https://www.researchgate.net/publication/374615955_Artificial_Intelligence_for_EEG_Prediction_Applied_Chaos_Theory#fullTextFileContent" rel="dct:source">https://www.researchgate.net/publication/374615955_Artificial_Intelligence_for_EEG_Prediction_Applied_Chaos_Theory#fullTextFileContent</a>.<br />Permissions beyond the scope of this license may be available at <a xmlns:cc="http://creativecommons.org/ns#" href="https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net" rel="cc:morePermissions">https://github.com/Metaverse-Crowdsource/EEG-Chaos-Kuramoto-Neural-Net</a>.
133140

Original file line numberDiff line numberDiff line change
@@ -1,4 +1,13 @@
11
numpy==1.24.3
22
matplotlib==3.7.0
3+
scipy==1.10.1
4+
torch==2.0.1+cu117
5+
torchdiffeq==0.2.3
6+
torchsummary
7+
minepy==1.2.6
38
pyrqa
49
pyts==0.12.0
10+
MFDFA==0.4.3
11+
pyinform
12+
graphviz==0.20.1
13+
networkx==3.0

Spectral Analysis/requirements.txt

+10
Original file line numberDiff line numberDiff line change
@@ -1,3 +1,13 @@
11
numpy==1.24.3
22
matplotlib==3.7.0
33
scipy==1.10.1
4+
torch==2.0.1+cu117
5+
torchdiffeq==0.2.3
6+
torchsummary
7+
minepy==1.2.6
8+
pyrqa
9+
pyts==0.12.0
10+
MFDFA==0.4.3
11+
pyinform
12+
graphviz==0.20.1
13+
networkx==3.0

0 commit comments

Comments
 (0)