|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "metadata": {}, |
| 6 | + "source": [ |
| 7 | + "# Image Classification (CNN - keras)" |
| 8 | + ] |
| 9 | + }, |
| 10 | + { |
| 11 | + "cell_type": "code", |
| 12 | + "execution_count": 1, |
| 13 | + "metadata": {}, |
| 14 | + "outputs": [], |
| 15 | + "source": [ |
| 16 | + "# try the process of implementing CNN with Keras to classify images \n", |
| 17 | + "# 1. import useful packages \n", |
| 18 | + "# 2. load the data before visualize and preprocess it \n", |
| 19 | + "# 3. try a simplt CNN moodel and then evaluate its performances \n", |
| 20 | + "# 4. use techniques such as data augmentation, learning rate decay and dropout to increase our model's accuracy \n" |
| 21 | + ] |
| 22 | + }, |
| 23 | + { |
| 24 | + "cell_type": "markdown", |
| 25 | + "metadata": {}, |
| 26 | + "source": [ |
| 27 | + "## with applications to Garbage Sorting " |
| 28 | + ] |
| 29 | + }, |
| 30 | + { |
| 31 | + "cell_type": "markdown", |
| 32 | + "metadata": {}, |
| 33 | + "source": [ |
| 34 | + "### import packages " |
| 35 | + ] |
| 36 | + }, |
| 37 | + { |
| 38 | + "cell_type": "code", |
| 39 | + "execution_count": 2, |
| 40 | + "metadata": {}, |
| 41 | + "outputs": [], |
| 42 | + "source": [ |
| 43 | + "import numpy as np # linear algebra \n", |
| 44 | + "import pandas as pd # data processing \n", |
| 45 | + "import os " |
| 46 | + ] |
| 47 | + }, |
| 48 | + { |
| 49 | + "cell_type": "code", |
| 50 | + "execution_count": null, |
| 51 | + "metadata": {}, |
| 52 | + "outputs": [], |
| 53 | + "source": [ |
| 54 | + "\n" |
| 55 | + ] |
| 56 | + }, |
| 57 | + { |
| 58 | + "cell_type": "code", |
| 59 | + "execution_count": 33, |
| 60 | + "metadata": {}, |
| 61 | + "outputs": [], |
| 62 | + "source": [ |
| 63 | + "import matplotlib.pyplot as plt\n", |
| 64 | + "import cv2 # image processing package\n", |
| 65 | + "# keras for model\n", |
| 66 | + "import keras\n", |
| 67 | + "from keras.layers import Conv2D, MaxPool2D, Dropout, Flatten, Dense\n", |
| 68 | + "from keras.models import Sequential\n", |
| 69 | + "from sklearn.utils import shuffle\n", |
| 70 | + "import random\n" |
| 71 | + ] |
| 72 | + }, |
| 73 | + { |
| 74 | + "cell_type": "code", |
| 75 | + "execution_count": 34, |
| 76 | + "metadata": {}, |
| 77 | + "outputs": [], |
| 78 | + "source": [ |
| 79 | + "# this is where all the images are stored\n", |
| 80 | + "# users need to change the file path here \n", |
| 81 | + "# under this file path, we have four folders, each will have a category for garbage sorting \n", |
| 82 | + "# put images under corresponding folder \n", |
| 83 | + "train_dir = \"../yzheng070/Desktop/seg_train\"\n" |
| 84 | + ] |
| 85 | + }, |
| 86 | + { |
| 87 | + "cell_type": "code", |
| 88 | + "execution_count": null, |
| 89 | + "metadata": {}, |
| 90 | + "outputs": [], |
| 91 | + "source": [ |
| 92 | + "# define how many classes we have \n", |
| 93 | + "classes = ['dry', 'wet', 'hazardous', 'recycle']\n", |
| 94 | + "len(classes)\n" |
| 95 | + ] |
| 96 | + }, |
| 97 | + { |
| 98 | + "cell_type": "markdown", |
| 99 | + "metadata": {}, |
| 100 | + "source": [ |
| 101 | + "### read image and visualize some here \n" |
| 102 | + ] |
| 103 | + }, |
| 104 | + { |
| 105 | + "cell_type": "code", |
| 106 | + "execution_count": null, |
| 107 | + "metadata": {}, |
| 108 | + "outputs": [], |
| 109 | + "source": [ |
| 110 | + "# read image and visualize some here \n", |
| 111 | + "one_from_each = []\n", |
| 112 | + "titles = []\n", |
| 113 | + "classes = os.listdir(train_dir)\n", |
| 114 | + "n_classes = len(classes)\n", |
| 115 | + "for x in classes:\n", |
| 116 | + " unique_img_dir = train_dir + '/' + x\n", |
| 117 | + " temp_directory = os.listdir(unique_img_dir)\n", |
| 118 | + " temp_img = unique_img_dir + '/' + temp_directory[random.randint(1,10)]\n", |
| 119 | + " image = cv2.imread(temp_img)\n", |
| 120 | + " image = np.array(image)\n", |
| 121 | + " image = image.astype('float32')/255.0\n", |
| 122 | + " one_from_each.append(image)\n", |
| 123 | + " titles.append(x)\n", |
| 124 | + " \n", |
| 125 | + "for i in range(5):\n", |
| 126 | + " imageshow = one_from_each[i]\n", |
| 127 | + " plt.imshow(imageshow[:,:,::-1])\n", |
| 128 | + " plt.title(titles[i])\n", |
| 129 | + " plt.show()" |
| 130 | + ] |
| 131 | + }, |
| 132 | + { |
| 133 | + "cell_type": "code", |
| 134 | + "execution_count": null, |
| 135 | + "metadata": {}, |
| 136 | + "outputs": [], |
| 137 | + "source": [ |
| 138 | + "# define labels \n", |
| 139 | + "print(classes)\n", |
| 140 | + "labels_dict = {0:classes[0],\n", |
| 141 | + " 1:classes[1],\n", |
| 142 | + " 2:classes[2],\n", |
| 143 | + " 3:classes[3]\n", |
| 144 | + " }" |
| 145 | + ] |
| 146 | + }, |
| 147 | + { |
| 148 | + "cell_type": "markdown", |
| 149 | + "metadata": {}, |
| 150 | + "source": [ |
| 151 | + "### load data " |
| 152 | + ] |
| 153 | + }, |
| 154 | + { |
| 155 | + "cell_type": "code", |
| 156 | + "execution_count": null, |
| 157 | + "metadata": {}, |
| 158 | + "outputs": [], |
| 159 | + "source": [ |
| 160 | + "# define a load data function \n", |
| 161 | + "# to process it for modeling \n", |
| 162 | + "\n", |
| 163 | + "def load_data(directory):\n", |
| 164 | + " size = 150,150\n", |
| 165 | + " images = []\n", |
| 166 | + " labels = []\n", |
| 167 | + " \n", |
| 168 | + " for folder in os.listdir(directory):\n", |
| 169 | + " print(\"Loading images from : \",folder, \": \", end=\"\")\n", |
| 170 | + " for file in os.listdir(directory + \"/\" + folder):\n", |
| 171 | + " img_path = directory + \"/\" + folder + \"/\" + file\n", |
| 172 | + " curr_img = cv2.imread(img_path)\n", |
| 173 | + " curr_img = cv2.resize(curr_img, size)\n", |
| 174 | + " images.append(curr_img)\n", |
| 175 | + " if folder == labels_dict[0]:\n", |
| 176 | + " current_label = 0\n", |
| 177 | + " elif folder == labels_dict[1]:\n", |
| 178 | + " current_label = 1\n", |
| 179 | + " elif folder == labels_dict[2]:\n", |
| 180 | + " current_label = 2\n", |
| 181 | + " elif folder == labels_dict[3]:\n", |
| 182 | + " current_label = 3\n", |
| 183 | + " \n", |
| 184 | + " labels.append(current_label)\n", |
| 185 | + " print(\"completed\")\n", |
| 186 | + " \n", |
| 187 | + " images, labels = shuffle(images, labels)\n", |
| 188 | + " \n", |
| 189 | + " images = np.array(images)\n", |
| 190 | + " images = images.astype('float32')/255.0\n", |
| 191 | + " labels = np.array(labels)\n", |
| 192 | + " labels = keras.utils.to_categorical(labels, n_classes)\n", |
| 193 | + " \n", |
| 194 | + " return images, labels" |
| 195 | + ] |
| 196 | + }, |
| 197 | + { |
| 198 | + "cell_type": "code", |
| 199 | + "execution_count": null, |
| 200 | + "metadata": {}, |
| 201 | + "outputs": [], |
| 202 | + "source": [ |
| 203 | + "X_train, Y_train = load_data(train_dir)" |
| 204 | + ] |
| 205 | + }, |
| 206 | + { |
| 207 | + "cell_type": "markdown", |
| 208 | + "metadata": {}, |
| 209 | + "source": [ |
| 210 | + "### CNN Model" |
| 211 | + ] |
| 212 | + }, |
| 213 | + { |
| 214 | + "cell_type": "code", |
| 215 | + "execution_count": null, |
| 216 | + "metadata": {}, |
| 217 | + "outputs": [], |
| 218 | + "source": [ |
| 219 | + "# modeling \n", |
| 220 | + "# using CNN \n", |
| 221 | + "# Convolutional Neural Network \n", |
| 222 | + "\n", |
| 223 | + "model = Sequential()\n", |
| 224 | + "\n", |
| 225 | + "model.add(Conv2D(32, kernel_size =[5,5], strides = 2, activation = 'relu', input_shape = (150,150,3)))\n", |
| 226 | + "model.add(MaxPool2D(pool_size = [2,2], strides = 2))\n", |
| 227 | + "model.add(Conv2D(64, kernel_size = [3,3], padding = 'same', activation = \"relu\"))\n", |
| 228 | + "model.add(Conv2D(64, kernel_size = [3,3], padding = 'same', activation = \"relu\"))\n", |
| 229 | + "model.add(MaxPool2D(pool_size = [2,2], strides = 2))\n", |
| 230 | + "model.add(Conv2D(128, kernel_size = [3,3], activation = \"relu\"))\n", |
| 231 | + "model.add(Conv2D(128, kernel_size = [3,3], activation = \"relu\"))\n", |
| 232 | + "model.add(MaxPool2D(pool_size = [2,2], strides = 2))\n", |
| 233 | + "model.add(Conv2D(256, kernel_size = [3,3], activation = \"relu\"))\n", |
| 234 | + "model.add(Dropout(0.5))\n", |
| 235 | + "model.add(Flatten())\n", |
| 236 | + "model.add(Dense(512, activation = 'relu'))\n", |
| 237 | + "model.add(Dense(n_classes, activation = 'softmax'))\n", |
| 238 | + "\n", |
| 239 | + "model.summary()" |
| 240 | + ] |
| 241 | + }, |
| 242 | + { |
| 243 | + "cell_type": "markdown", |
| 244 | + "metadata": {}, |
| 245 | + "source": [ |
| 246 | + "### Validation" |
| 247 | + ] |
| 248 | + }, |
| 249 | + { |
| 250 | + "cell_type": "code", |
| 251 | + "execution_count": null, |
| 252 | + "metadata": {}, |
| 253 | + "outputs": [], |
| 254 | + "source": [ |
| 255 | + "# model validation\n", |
| 256 | + "model.compile(loss = \"categorical_crossentropy\", optimizer = \"adam\", metrics = [\"accuracy\"])\n", |
| 257 | + "model_hist = model.fit(X_train, Y_train, epochs = 10, validation_split = 0.1, batch_size = 32)" |
| 258 | + ] |
| 259 | + }, |
| 260 | + { |
| 261 | + "cell_type": "code", |
| 262 | + "execution_count": null, |
| 263 | + "metadata": {}, |
| 264 | + "outputs": [], |
| 265 | + "source": [] |
| 266 | + }, |
| 267 | + { |
| 268 | + "cell_type": "code", |
| 269 | + "execution_count": null, |
| 270 | + "metadata": {}, |
| 271 | + "outputs": [], |
| 272 | + "source": [ |
| 273 | + "# plot the accuracy \n", |
| 274 | + "plt.plot(model_hist.history['acc'])\n", |
| 275 | + "plt.plot(model_hist.history['val_acc'])\n", |
| 276 | + "plt.title(\"training vs Validation accuracy\")\n", |
| 277 | + "plt.legend(['train acc.','validation acc.'], loc = 'lower right')\n", |
| 278 | + "plt.xlabel(\"Epoch\")\n", |
| 279 | + "plt.ylabel(\"Accuracy\")\n", |
| 280 | + "plt.show()\n", |
| 281 | + "\n", |
| 282 | + "plt.plot(model_hist.history['loss'])\n", |
| 283 | + "plt.plot(model_hist.history['val_loss'])\n", |
| 284 | + "plt.title(\"Loss plot (train vs validation)\")\n", |
| 285 | + "plt.legend(['training loss','validation loss'], loc = 'upper right')\n", |
| 286 | + "plt.xlabel(\"Epoch\")\n", |
| 287 | + "plt.ylabel(\"Loss\")\n", |
| 288 | + "plt.show()\n" |
| 289 | + ] |
| 290 | + }, |
| 291 | + { |
| 292 | + "cell_type": "markdown", |
| 293 | + "metadata": {}, |
| 294 | + "source": [ |
| 295 | + "### Testing " |
| 296 | + ] |
| 297 | + }, |
| 298 | + { |
| 299 | + "cell_type": "code", |
| 300 | + "execution_count": null, |
| 301 | + "metadata": {}, |
| 302 | + "outputs": [], |
| 303 | + "source": [ |
| 304 | + "# test data\n", |
| 305 | + "# put model on test data to check results \n", |
| 306 | + "\n", |
| 307 | + "# get test data \n", |
| 308 | + "# users need to change to your path \n", |
| 309 | + "test_dir = \"../yzheng070/Desktop/seg_test\"\n", |
| 310 | + "\n", |
| 311 | + "X_test, Y_test = load_data(test_dir)" |
| 312 | + ] |
| 313 | + }, |
| 314 | + { |
| 315 | + "cell_type": "code", |
| 316 | + "execution_count": null, |
| 317 | + "metadata": {}, |
| 318 | + "outputs": [], |
| 319 | + "source": [ |
| 320 | + "# get accuracy on test data \n", |
| 321 | + "metrics = model.evaluate(X_test, Y_test)\n", |
| 322 | + "print(\"Model metrics = \",model.metrics_names)\n", |
| 323 | + "print(\"Testing Accuracy = \", metrics[1])" |
| 324 | + ] |
| 325 | + } |
| 326 | + ], |
| 327 | + "metadata": { |
| 328 | + "kernelspec": { |
| 329 | + "display_name": "Python 3", |
| 330 | + "language": "python", |
| 331 | + "name": "python3" |
| 332 | + }, |
| 333 | + "language_info": { |
| 334 | + "codemirror_mode": { |
| 335 | + "name": "ipython", |
| 336 | + "version": 3 |
| 337 | + }, |
| 338 | + "file_extension": ".py", |
| 339 | + "mimetype": "text/x-python", |
| 340 | + "name": "python", |
| 341 | + "nbconvert_exporter": "python", |
| 342 | + "pygments_lexer": "ipython3", |
| 343 | + "version": "3.7.3" |
| 344 | + } |
| 345 | + }, |
| 346 | + "nbformat": 4, |
| 347 | + "nbformat_minor": 2 |
| 348 | +} |
0 commit comments