-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtest.py
90 lines (76 loc) · 3.59 KB
/
test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import argparse
import collections
import torch
from torchinfo import summary
from tqdm import tqdm
import data_loader.data_loaders as module_data
import model as module_arch
import model.loss as module_loss
import model.metric as module_metric
from parse_config import ConfigParser
from utils import get_logger, parameters_extractor, str2bool, consume_prefix_in_state_dict_if_present
def main(config):
logger = get_logger(name=__name__, log_dir=config.log_dir,
test=True, verbosity=config['trainer']['verbosity'])
# setup data_loader instances
data_loader_obj = config.init_obj('test_data_loader', module_data)
test_data_loader = data_loader_obj.get_test_loader()
# get function handles of loss and metrics
loss_fn = getattr(module_loss, config['loss'])
metric_fns = [getattr(module_metric, met) for met in config['metrics']]
logger.info('Loading checkpoint: {} ...'.format(config.resume))
if not torch.cuda.is_available():
checkpoint = torch.load(
config.resume, map_location=torch.device('cpu'))
else:
checkpoint = torch.load(config.resume)
if len(checkpoint.keys()) == 1 and str2bool(input("Is this a fused model y/n? ")):
model = config.init_obj('arch', module_arch, batchnorm=False)
else:
model = config.init_obj('arch', module_arch)
# build model architecture
state_dict = checkpoint['state_dict']
consume_prefix_in_state_dict_if_present(state_dict, "module.")
model.load_state_dict(state_dict)
# prepare model for testing
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
model = model.to(device)
logger.info(summary(model, input_size=[config['data_loader']
['args']['batch_size']] + config['input_size'], verbose=0))
model.eval()
total_loss = 0.0
total_metrics = torch.zeros(len(metric_fns))
with torch.no_grad():
for i, (data, target) in enumerate(tqdm(test_data_loader)):
data = data.to(device)
target = target.to(device)
output = model(data)
loss = loss_fn(output, target)
batch_size = data.shape[0]
total_loss += loss.item() * batch_size
for i, metric in enumerate(metric_fns):
total_metrics[i] += metric(output, target) * batch_size
n_samples = len(test_data_loader.sampler)
log = {'loss': total_loss / n_samples}
log.update({
met.__name__: total_metrics[i].item() / n_samples for i, met in enumerate(metric_fns)
})
if 'extract' in config._config:
if str2bool(config['extract']):
logger.info("Extracting Parameters\n")
logger.info(parameters_extractor(
model, config['extractor'], config.log_dir))
logger.info(log)
if __name__ == '__main__':
args = argparse.ArgumentParser(description='PyTorch Template')
args.add_argument('-c', '--config', default=None, type=str,
help='config file path (default: None)')
args.add_argument('-r', '--resume', default=None, type=str,
help='path to latest checkpoint (default: None)')
args.add_argument('-d', '--device', default=None, type=str,
help='indices of GPUs to enable (default: all)')
CustomArgs = collections.namedtuple('CustomArgs', 'flags type target help')
options = [CustomArgs(['-x', '--extract'], type=str, target=('extract'),
help='extract parameters of the model (default: False)')]
config = ConfigParser.from_args(args, options=options, test=True)
main(config)