-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgrid_t.f90
4196 lines (2970 loc) · 146 KB
/
grid_t.f90
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
MODULE TRANSFORM
USE MPIINFO
USE DECLARATION
IMPLICIT NONE
CONTAINS
! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
REAL FUNCTION TRIANGLEAREA(N)
!> @brief
!> This function computes the area of a triangle in 3D
IMPLICIT NONE
INTEGER,INTENT(IN)::N
VVB(1:3)=VEXT(1,1:3)
VVC(1:3)=VEXT(2,1:3)
VVD(1:3)=VEXT(3,1:3)
VVA(1,1)=VVB(2);VVA(2,1)=VVC(2);VVA(3,1)=VVD(2)
VVA(1,2)=VVB(3);VVA(2,2)=VVC(3);VVA(3,2)=VVD(3)
VVA(1,3)=1.0d0;VVA(2,3)=1.0d0;VVA(3,3)=1.0D0
VVJACOBSURF(1)=VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3)))
VVA(1,1)=VVB(3);VVA(2,1)=VVC(3);VVA(3,1)=VVD(3)
VVA(1,2)=VVB(1);VVA(2,2)=VVC(1);VVA(3,2)=VVD(1)
VVA(1,3)=1.0d0;VVA(2,3)=1.0d0;VVA(3,3)=1.0D0
VVJACOBSURF(2)=VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3)))
VVA(1,1)=VVB(1);VVA(2,1)=VVC(1);VVA(3,1)=VVD(1)
VVA(1,2)=VVB(2);VVA(2,2)=VVC(2);VVA(3,2)=VVD(2)
VVA(1,3)=1.0d0; VVA(2,3)=1.0d0; VVA(3,3)=1.0D0
VVJACOBSURF(3)=VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3)))
TRIANGLEAREA=((OO2)*(SQRT((VVJACOBSURF(1)**2)+(VVJACOBSURF(2)**2)+(VVJACOBSURF(3)**2))))
END FUNCTION TRIANGLEAREA
REAL FUNCTION QUADAREA(N)
!> @brief
!> This function computes the area of a quadrilateral in 3D
IMPLICIT NONE
INTEGER,INTENT(IN)::N
VVE(1:3)=VEXT(4,1:3)-VEXT(2,1:3)
VVD(1:3)=VEXT(3,1:3)-VEXT(1,1:3)
QUADAREA=OO2*sqrt((((VVE(2)*VVD(3))-(VVE(3)*VVD(2)))**2)+(((VVE(3)*VVD(1))-(VVE(1)*VVD(3)))**2)+(((VVE(1)*VVD(2))-(VVE(2)*VVD(1)))**2))
END FUNCTION QUADAREA
REAL FUNCTION LINEAREA(N)
!> @brief
!> This function computes the length of an edge in 2D
IMPLICIT NONE
INTEGER,INTENT(IN)::N
VVE(1:2)=VEXT(2,1:2)-VEXT(1,1:2)
linearea=sqrt((vve(1)**2)+(vve(2)**2))
END FUNCTION LINEAREA
REAL FUNCTION QUADVOLUME(N)
!> @brief
!> This function computes the area of quad in 2D
IMPLICIT NONE
!!$OMP THREADPRIVATE(QUADVOLUME)
INTEGER,INTENT(IN)::N
real::s,t,r,vol
integer::kK,II
VVXI(1)=-1.0d0; VVeta(1)=-1.0d0;
VVXI(2)=1.0d0; VVeta(2)=-1.0d0;
VVXI(3)=1.0d0; VVeta(3)=1.0d0;
VVXI(4)=-1.0d0; VVeta(4)=1.0d0;
VVnallx(:)=0.0d0;VVnally(:)=0.0
do Kk=1,qp_QUAD
r=QPOINTS(1,Kk)
s=QPOINTS(2,Kk)
do iI=1,4
VVNXI(1)=-(0.25D0)*(1.0D0-s); VVNETA(1)=-(0.25D0)*(1.D0-r);
VVNXI(2)=(0.25D0)*(1.0D0-s); VVNETA(2)=-(0.25D0)*(1.D0+r);
VVNXI(3)=(0.25D0)*(1.0D0+s); VVNETA(3)=(0.25D0)*(1.D0+r);
VVNXI(4)=-(0.25D0)*(1.0D0+s); VVNETA(4)=(0.25D0)*(1.D0-r);
VVnallx(ii)=VVnallx(ii)+(VVNXI(ii)*WEQUA3D(Kk))
VVnally(ii)=VVnally(ii)+(VVNETA(ii)*WEQUA3D(Kk))
end do
end do
VVa=0.0d0
VVa1=0.0d0
do iI=1,4
VVnxi(ii)=VVnallx(ii)
VVneta(ii)=VVnally(ii)
VVa(1,1)=VVa(1,1)+VVnxi(ii)*vext(ii,1); VVa(1,2)=VVa(1,2)+VVnxi(ii)*vext(ii,2)
VVa(2,1)=VVa(2,1)+VVneta(ii)*vext(ii,1); VVa(2,2)=VVa(2,2)+VVneta(ii)*vext(ii,2)
end do
DETA(1)=(VVA(1,1)*VVA(2,2))-(VVA(1,2)*VVA(2,1))
VVA1(1,1)=(VVA(2,2))
VVA1(1,2)=-(VVA(1,2))
VVA1(2,1)=-(VVA(2,1))
VVA1(2,2)=(VVA(1,1))
vol=DETA(1)*4.0d0
VVa1=VVa1/DETA(1)
! Deta(1)=vol
quadvolume=VOL
END FUNCTION QUADVOLUME
REAL FUNCTION TRIANGLEVOLUME(N)
!> @brief
!> This function computes the area of triangle in 2D
IMPLICIT NONE
!!$OMP THREADPRIVATE(TRIANGLEVOLUME)
INTEGER,INTENT(IN)::N
real::s,t,r,vol
VVA(1,1)=VEXT(1,1)-VEXT(3,1)
VVA(1,2)=VEXT(1,2)-VEXT(3,2)
VVA(2,1)=VEXT(2,1)-VEXT(3,1)
VVA(2,2)=VEXT(2,2)-VEXT(3,2)
VOL=(VVA(1,1)*VVA(2,2))-(VVA(2,1)*VVA(1,2))
VVA1(1,1)=(VVA(2,2))
VVA1(1,2)=-(VVA(1,2))
VVA1(2,1)=-(VVA(2,1))
VVA1(2,2)=(VVA(1,1))
vol=vol*0.50d0
VVA1=VVA1/VOL
Deta(1)=vol
TRIANGLEVOLUME=VOL
END FUNCTION TRIANGLEVOLUME
! ! ! ! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
REAL FUNCTION TETRAVOLUME(N)
!> @brief
!> This function computes the volume of a tetrahedrals
IMPLICIT NONE
!!$OMP THREADPRIVATE(TETRAVOLUME)
INTEGER,INTENT(IN)::N
VVB(1:3)=VEXT(1,1:3)
VVC(1:3)=VEXT(2,1:3)
VVD(1:3)=VEXT(3,1:3)
VVE(1:3)=vext(4,1:3)
VVA(1,1)=VVC(2);VVA(2,1)=VVD(2);VVA(3,1)=VVE(2)
VVA(1,2)=VVC(3);VVA(2,2)=VVD(3);VVA(3,2)=VVE(3)
VVA(1,3)=1.0d0;VVA(2,3)=1.0d0;VVA(3,3)=1.0d0
VVJACOBVOLUME(1)=VVB(1)*(VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3))))
VVA(1,1)=VVC(1);VVA(2,1)=VVD(1);VVA(3,1)=VVE(1)
VVA(1,2)=VVC(3);VVA(2,2)=VVD(3);VVA(3,2)=VVE(3)
VVA(1,3)=1.0d0;VVA(2,3)=1.0d0;VVA(3,3)=1.0d0
VVJACOBVOLUME(2)=(-VVB(2))*(VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3))))
VVA(1,1)=VVC(1);VVA(2,1)=VVD(1);VVA(3,1)=VVE(1)
VVA(1,2)=VVC(2);VVA(2,2)=VVD(2);VVA(3,2)=VVE(2)
VVA(1,3)=1.0d0;VVA(2,3)=1.0d0;VVA(3,3)=1.0
VVJACOBVOLUME(3)=VVB(3)*(VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3))))
VVA(1,1)=VVC(1);VVA(2,1)=VVD(1);VVA(3,1)=VVE(1)
VVA(1,2)=VVC(2);VVA(2,2)=VVD(2);VVA(3,2)=VVE(2)
VVA(1,3)=VVC(3);VVA(2,3)=VVD(3);VVA(3,3)=VVE(3)
VVJACOBVOLUME(4)=(-1.0)*(VVA(1,1)*((VVA(3,3)*VVA(2,2))-(VVA(3,2)*VVA(2,3)))-VVA(2,1)*&
((VVA(3,3)*VVA(1,2))-(VVA(3,2)*VVA(1,3)))+VVA(3,1)*((VVA(2,3)*VVA(1,2))-(VVA(2,2)*VVA(1,3))))
TETRAVOLUME=abs((0.166666666666666)*(VVJACOBVOLUME(1)+VVJACOBVOLUME(2)+VVJACOBVOLUME(3)+VVJACOBVOLUME(4)))
END FUNCTION TETRAVOLUME
SUBROUTINE COMPUTEJACOBIANS
!> @brief
!> This function computes the jacobian of a tetrahedral
IMPLICIT NONE
vva(:,1) = vext(2,:)-vext(1,:)
vva(:,2) = vext(3,:)-vext(1,:)
vva(:,3) = vext(4,:)-vext(1,:)
Deta(1) = vva(1,1)*((vva(3,3)*vva(2,2))-(vva(3,2)*vva(2,3))) &
- vva(2,1)*((vva(3,3)*vva(1,2))-(vva(3,2)*vva(1,3))) &
+ vva(3,1)*((vva(2,3)*vva(1,2))-(vva(2,2)*vva(1,3)))
vva1(1,1) = VVA(3,3)*VVA(2,2) - VVA(3,2)*VVA(2,3)
vva1(1,2) = -(VVA(3,3)*VVA(1,2) - VVA(3,2)*VVA(1,3))
vva1(1,3) = VVA(2,3)*VVA(1,2) - VVA(2,2)*VVA(1,3)
vva1(2,1) = -(VVA(3,3)*VVA(2,1)-VVA(3,1)*VVA(2,3) )
vva1(2,2) = VVA(3,3)*VVA(1,1) -VVA(3,1)*VVA(1,3)
vva1(2,3) = -(VVA(2,3)*VVA(1,1)-VVA(2,1)*VVA(1,3))
vva1(3,1) = VVA(3,2)*VVA(2,1)-VVA(3,1)*VVA(2,2)
vva1(3,2) = -(VVA(3,2)*VVA(1,1)-VVA(3,1)*VVA(1,2))
vva1(3,3) = VVA(2,2)*VVA(1,1)-VVA(2,1)*VVA(1,2)
vva1 = vva1/Deta(1)
END SUBROUTINE COMPUTEJACOBIANs
SUBROUTINE COMPUTeJACOBIANS2
!> @brief
!> This function computes the volume of a triangle
implicit none
VVA(1,1) = VEXT(2,1) - VEXT(1,1); VVA(1,2) = VEXT(3,1) - VEXT(1,1)
VVA(2,1) = VEXT(2,2) - VEXT(1,2); VVA(2,2) = VEXT(3,2) - VEXT(1,2)
DeTA(1) = VVA(1,1)*VVA(2,2) - VVA(1,2)*VVA(2,1)
VVA1(1,1) = VEXT(3,2) - Vext(1,2); VVA1(1,2) = -(VEXT(3,1) - VEXT(1,1))
VVA1(2,1) = -(VEXT(2,2) - Vext(1,2)); VVA1(2,2) = VEXT(2,1) - VEXT(1,1)
VVA1(:,:) = VVA1(:,:)/DETA(1)
END SUBROUTINE COMPUTEJACOBIANS2
REAL FUNCTION hexaVOLUME(N)
!> @brief
!> This function computes the volume of a hexahedral
IMPLICIT NONE
!!$OMP THREADPRIVATE(hexaVOLUME)
INTEGER,INTENT(IN)::N
real::s,t,r,vol
integer::kk,Ii
VVXI(1)=-1.0d0; VVeta(1)=-1.0d0; VVzeta(1)=-1.0d0
VVXI(2)=1.0d0; VVeta(2)=-1.0d0; VVzeta(2)=-1.0d0
VVXI(3)=1.0d0; VVeta(3)=1.0d0; VVzeta(3)=-1.0d0
VVXI(4)=-1.0d0; VVeta(4)=1.0d0; VVzeta(4)=-1.0d0
VVXI(5)=-1.0d0; VVeta(5)=-1.0d0; VVzeta(5)=1.0d0
VVXI(6)=1.0d0; VVeta(6)=-1.0d0; VVzeta(6)=1.0d0
VVXI(7)=1.0d0; VVeta(7)=1.0d0; VVzeta(7)=1.0d0
VVXI(8)=-1.0d0; VVeta(8)=1.0d0; VVzeta(8)=1.0d0
VVnallx(:)=0.0d0;VVnally(:)=0.0d0;VVnallz(:)=0.0d0
do kk=1,qp_hexa
r=QPOINTS(1,Kk)
s=QPOINTS(2,Kk)
t=QPOINTS(3,Kk)
do ii=1,8
VVNXI(1)=-(1.0d0/8.0d0)*(1.0-s)*(1.0d0-t); VVNETA(1)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-T); VVNZETA(1)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-s);
VVNXI(2)=(1.0d0/8.0d0)*(1.0-s)*(1.0d0-t); VVNETA(2)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-T); VVNZETA(2)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-s);
VVNXI(3)=(1.0d0/8.0d0)*(1.0+s)*(1.0d0-t); VVNETA(3)=(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-T); VVNZETA(3)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0+s);
VVNXI(4)=-(1.0d0/8.0d0)*(1.0+s)*(1.0d0-t); VVNETA(4)=(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-T); VVNZETA(4)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0+s);
VVNXI(5)=-(1.0d0/8.0d0)*(1.0-s)*(1.0d0+t); VVNETA(5)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0+t); VVNZETA(5)=(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-s);
VVNXI(6)=(1.0d0/8.0d0)*(1.0-s)*(1.0d0+t); VVNETA(6)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0+t); VVNZETA(6)=(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-s);
VVNXI(7)=(1.0d0/8.0d0)*(1.0+s)*(1.0d0+t); VVNETA(7)=(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0+t); VVNZETA(7)=(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0+s);
VVNXI(8)=-(1.0d0/8.0d0)*(1.0+s)*(1.0d0+t); VVNETA(8)=(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0+t); VVNZETA(8)=(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0+s);
VVnallx(ii)=VVnallx(ii)+(VVNXI(ii)*WEQUA3D(kk))
VVnally(ii)=VVnally(ii)+(VVNETA(ii)*WEQUA3D(kk))
VVnallz(ii)=VVnallz(ii)+(VVNZETA(ii)*WEQUA3D(kk))
end do
end do
VVa=0.0d0
VVa1=0.0d0
do ii=1,8
! r=xi(ii)
! s=eta(ii)
! t=zeta(ii)
VVnxi(ii)=VVnallx(ii)
VVneta(ii)=VVnally(ii)
VVnzeta(ii)=VVnallz(ii)
VVa(1,1)=VVa(1,1)+VVnxi(ii)*vext(ii,1); VVa(1,2)=VVa(1,2)+VVnxi(ii)*vext(ii,2); VVa(1,3)=VVa(1,3)+VVnxi(ii)*vext(ii,3)
VVa(2,1)=VVa(2,1)+VVneta(ii)*vext(ii,1); VVa(2,2)=VVa(2,2)+VVneta(ii)*vext(ii,2); VVa(2,3)=VVa(2,3)+VVneta(ii)*vext(ii,3)
VVa(3,1)=VVa(3,1)+VVnzeta(ii)*vext(ii,1); VVa(3,2)=VVa(3,2)+VVnzeta(ii)*vext(ii,2); VVa(3,3)=VVa(3,3)+VVnzeta(ii)*vext(ii,3)
end do
vol=(VVA(1,1)*VVA(2,2)*VVA(3,3))-(VVA(1,1)*VVA(2,3)*VVA(3,2))-(VVA(1,2)*VVA(2,1)*VVA(3,3))+&
(VVA(1,2)*VVA(2,3)*VVA(3,1))+(VVA(1,3)*VVA(2,1)*VVA(3,2))-(VVA(1,3)*VVA(2,2)*VVA(3,1))
! vol=vol*8.0d0
VVA1(1,1)=(VVA(2,2)*VVA(3,3))-(VVA(2,3)*VVA(3,2));VVA1(1,2)=((VVA(1,3)*VVA(3,2))-(VVA(3,3)*VVA(1,2)));VVA1(1,3)=(VVA(1,2)*VVA(2,3))-(VVA(2,2)*VVA(1,3));
VVA1(2,1)=((VVA(2,3)*VVA(3,1))-(VVA(3,3)*VVA(2,1)));VVA1(2,2)=((VVA(1,1)*VVA(3,3))-(VVA(3,1)*VVA(1,3)));VVA1(2,3)=((VVA(1,3)*VVA(2,1))-(VVA(2,3)*VVA(1,1)));
VVA1(3,1)=(VVA(2,1)*VVA(3,2))-(VVA(3,1)*VVA(2,2));VVA1(3,2)=((VVA(1,2)*VVA(3,1))-(VVA(3,2)*VVA(1,1)));VVA1(3,3)=(VVA(1,1)*VVA(2,2))-(VVA(2,1)*VVA(1,2));
deta(1)=(VVA(1,1)*VVA1(1,1))+(VVA(1,2)*VVA1(2,1))+(VVA(1,3)*VVA1(3,1))
VOL=DETA(1)*8.0D0
deta(1)=deta(1)
VVa1=VVa1/DETA(1)
HEXAVOLUME=VOL
END FUNCTION hexaVOLUME
REAL FUNCTION PYRAVOLUME(N)
!> @brief
!> This function computes the volume of a pyramid
IMPLICIT NONE
!!$OMP THREADPRIVATE(PYRAVOLUME)
INTEGER,INTENT(IN)::N
real::s,t,r,vol
integer::kk,ii
vvxi(1)=-1.0d0; vveta(1)=-1.0d0; vvzeta(1)=-1.0d0
vvxi(2)=1.0d0; vveta(2)=-1.0d0; vvzeta(2)=-1.0d0
vvxi(3)=1.0d0; vveta(3)=1.0d0; vvzeta(3)=-1.0d0
vvxi(4)=-1.0d0; vveta(4)=1.0d0; vvzeta(4)=-1.0d0
vvxi(5)=0.0d0; vveta(5)=0.0d0; vvzeta(5)=1.0d0
vvnallx(:)=0.0d0;vvnally(:)=0.0d0;vvnallz(:)=0.0d0
do kk=1,qp_PYRA
r=QPOINTS(1,kk)
s=QPOINTS(2,kk)
t=QPOINTS(3,kk)
do ii=1,5
vvnxi(1)=-(1.0d0/8.0d0)*(1.0-s)*(1.0d0-t); vvneta(1)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-t); vvnzeta(1)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-s);
vvnxi(2)=(1.0d0/8.0d0)*(1.0-s)*(1.0d0-t); vvneta(2)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-t); vvnzeta(2)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-s);
vvnxi(3)=(1.0d0/8.0d0)*(1.0+s)*(1.0d0-t); vvneta(3)=(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0-t); vvnzeta(3)=-(1.0d0/8.0d0)*(1.0d0+r)*(1.0d0+s);
vvnxi(4)=-(1.0d0/8.0d0)*(1.0+s)*(1.0d0-t); vvneta(4)=(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0-t); vvnzeta(4)=-(1.0d0/8.0d0)*(1.0d0-r)*(1.0d0+s);
vvnxi(5)=0.0d0; vvneta(5)=0.0d0; vvnzeta(5)=0.5d0;
vvnallx(ii)=vvnallx(ii)+(vvnxi(ii)*WEQUA3D(kk))
vvnally(ii)=vvnally(ii)+(vvneta(ii)*WEQUA3D(kk))
vvnallz(ii)=vvnallz(ii)+(vvnzeta(ii)*WEQUA3D(kk))
end do
end do
vva=0.0d0
vva1=0.0d0
do ii=1,5
vvnxi(ii)=vvnallx(ii)
vvneta(ii)=vvnally(ii)
vvnzeta(ii)=vvnallz(ii)
vva(1,1)=vva(1,1)+vvnxi(ii)*vext(ii,1); vva(1,2)=vva(1,2)+vvnxi(ii)*vext(ii,2); vva(1,3)=vva(1,3)+vvnxi(ii)*vext(ii,3)
vva(2,1)=vva(2,1)+vvneta(ii)*vext(ii,1); vva(2,2)=vva(2,2)+vvneta(ii)*vext(ii,2); vva(2,3)=vva(2,3)+vvneta(ii)*vext(ii,3)
vva(3,1)=vva(3,1)+vvnzeta(ii)*vext(ii,1);vva(3,2)=vva(3,2)+vvnzeta(ii)*vext(ii,2); vva(3,3)=vva(3,3)+vvnzeta(ii)*vext(ii,3)
end do
VVA1(1,1)=(VVA(2,2)*VVA(3,3))-(VVA(2,3)*VVA(3,2));VVA1(1,2)=((VVA(1,3)*VVA(3,2))-(VVA(3,3)*VVA(1,2)));VVA1(1,3)=(VVA(1,2)*VVA(2,3))-(VVA(2,2)*VVA(1,3));
VVA1(2,1)=((VVA(2,3)*VVA(3,1))-(VVA(3,3)*VVA(2,1)));VVA1(2,2)=((VVA(1,1)*VVA(3,3))-(VVA(3,1)*VVA(1,3)));VVA1(2,3)=((VVA(1,3)*VVA(2,1))-(VVA(2,3)*VVA(1,1)));
VVA1(3,1)=(VVA(2,1)*VVA(3,2))-(VVA(3,1)*VVA(2,2));VVA1(3,2)=((VVA(1,2)*VVA(3,1))-(VVA(3,2)*VVA(1,1)));VVA1(3,3)=(VVA(1,1)*VVA(2,2))-(VVA(2,1)*VVA(1,2));
deta(1)=(VVA(1,1)*VVA1(1,1))+(VVA(1,2)*VVA1(2,1))+(VVA(1,3)*VVA1(3,1))
DETA(1)=DETA(1)
VVa1=VVa1/DETA(1)
VOL=DETA(1)
PYRAVOLUME=VOL
END FUNCTION PYRAVOLUME
REAL FUNCTION PRISMVOLUME(N)
!> @brief
!> This function computes the volume of a prism
IMPLICIT NONE
! !$OMP THREADPRIVATE(PRISMVOLUME)
INTEGER,INTENT(IN)::N
real::s,t,r,vol
integer::kk,ii
vvxi(1)=1.0d0; vveta(1)=0.0d0; vvzeta(1)=-1.0d0
vvxi(2)=0.0d0; vveta(2)=1.0d0; vvzeta(2)=-1.0d0
vvxi(3)=0.0d0; vveta(3)=0.0d0; vvzeta(3)=-1.0d0
vvxi(4)=1.0d0; vveta(4)=0.0d0; vvzeta(4)=0.0d0
vvxi(5)=0.0d0; vveta(5)=1.0d0; vvzeta(5)=0.0d0
vvxi(6)=0.0d0; vveta(6)=0.0d0; vvzeta(6)=0.0d0
vvnallx(:)=0.0d0;vvnally(:)=0.0d0;vvnallz(:)=0.0d0
do ii=1,6
do kk=1,qp_prism
r=qpoints(1,kk)
s=qpoints(2,kk)
t=qpoints(3,kk)
vvnxi(1)=0.5d0*(1.0d0-t); vvneta(1)=0.0d0; vvnzeta(1)=-0.5d0*r;
vvnxi(2)=0.0d0; vvneta(2)=0.5d0*(1.0d0-t); vvnzeta(2)=-0.5d0*s;
vvnxi(3)=-0.5d0*(1.0d0-t); vvneta(3)=-0.5d0*(1.0d0-t); vvnzeta(3)=-0.5d0*(1.0-r-s);
vvnxi(4)=0.5d0*(1.0d0+t); vvneta(4)=0.0d0; vvnzeta(4)=0.5d0*r;
vvnxi(5)=0.0d0; vvneta(5)=0.5d0*(1.0d0+t); vvnzeta(5)=0.5d0*s;
vvnxi(6)=-0.5d0*(1.0d0+t); vvneta(6)=-0.5d0*(1.0d0+t); vvnzeta(6)=0.5d0*(1.0-r-s);
vvnallx(ii)=vvnallx(ii)+(vvnxi(ii)*WEQUA3D(kk))
vvnally(ii)=vvnally(ii)+(vvneta(ii)*WEQUA3D(kk))
vvnallz(ii)=vvnallz(ii)+(vvnzeta(ii)*WEQUA3D(kk))
end do
end do
vva=0.0d0
vva1=0.0d0
do ii=1,6
! r=xi(ii)
! s=eta(ii)
! t=zeta(ii)
vvnxi(ii)=vvnallx(ii)
vvneta(ii)=vvnally(ii)
vvnzeta(ii)=vvnallz(ii)
VVA(1,1)=VVA(1,1)+vvnxi(ii)*vext(ii,1); VVA(1,2)=VVA(1,2)+vvnxi(ii)*vext(ii,2); VVA(1,3)=VVA(1,3)+vvnxi(ii)*vext(ii,3)
VVA(2,1)=VVA(2,1)+vvneta(ii)*vext(ii,1); VVA(2,2)=VVA(2,2)+vvneta(ii)*vext(ii,2); VVA(2,3)=VVA(2,3)+vvneta(ii)*vext(ii,3)
VVA(3,1)=VVA(3,1)+vvnzeta(ii)*vext(ii,1); VVA(3,2)=VVA(3,2)+vvnzeta(ii)*vext(ii,2); VVA(3,3)=VVA(3,3)+vvnzeta(ii)*vext(ii,3)
end do
VVA1(1,1)=(VVA(2,2)*VVA(3,3))-(VVA(2,3)*VVA(3,2));VVA1(1,2)=((VVA(1,3)*VVA(3,2))-(VVA(3,3)*VVA(1,2)));VVA1(1,3)=(VVA(1,2)*VVA(2,3))-(VVA(2,2)*VVA(1,3));
VVA1(2,1)=((VVA(2,3)*VVA(3,1))-(VVA(3,3)*VVA(2,1)));VVA1(2,2)=((VVA(1,1)*VVA(3,3))-(VVA(3,1)*VVA(1,3)));VVA1(2,3)=((VVA(1,3)*VVA(2,1))-(VVA(2,3)*VVA(1,1)));
VVA1(3,1)=(VVA(2,1)*VVA(3,2))-(VVA(3,1)*VVA(2,2));VVA1(3,2)=((VVA(1,2)*VVA(3,1))-(VVA(3,2)*VVA(1,1)));VVA1(3,3)=(VVA(1,1)*VVA(2,2))-(VVA(2,1)*VVA(1,2));
deta(1)=(VVA(1,1)*VVA1(1,1))+(VVA(1,2)*VVA1(2,1))+(VVA(1,3)*VVA1(3,1))
DETA(1)=DETA(1)
VVa1=VVa1/DETA(1)
VOL=DETA(1)
PRISMVOLUME=VOL
END FUNCTION PRISMVOLUME
FUNCTION CORDINATES3(N,NODES_LIST,N_NODE)
!> @brief
!> This function computes the centre of 3d element
IMPLICIT NONE
INTEGER,INTENT(IN)::N,N_NODE
REAL,DIMENSION(3)::CORDINATES3
real::rnode
REAL,ALLOCATABLE,DIMENSION(:,:),INTENT(in)::NODES_LIST
rnode=n_node
CORDINATES3(1)=sum(nodes_list(1:n_node,1))/rnode
CORDINATES3(2)=sum(nodes_list(1:n_node,2))/rnode
CORDINATES3(3)=sum(nodes_list(1:n_node,3))/rnode
end function CORDINATES3
FUNCTION distance3(N)
!> @brief
!> This function computes the distance between two points in 3D
IMPLICIT NONE
INTEGER,INTENT(IN)::N
REAL::distance3
real::rnode
distance3=sqrt(((vext(1,1)-vext(2,1))**2)+((vext(1,2)-vext(2,2))**2)+((vext(1,3)-vext(2,3))**2))
end function distance3
FUNCTION distance2(N)
!> @brief
!> This function computes the distance between two points in 2D
IMPLICIT NONE
INTEGER,INTENT(IN)::N
REAL::distance2
real::rnode
distance2=sqrt(((vext(1,1)-vext(2,1))**2)+((vext(1,2)-vext(2,2))**2))
end function distance2
FUNCTION CORDINATES2(N,NODES_LIST,N_NODE)
!> @brief
!> This function computes the centre of 2d element
IMPLICIT NONE
INTEGER,INTENT(IN)::N,N_NODE
REAL,DIMENSION(2)::CORDINATES2
real::rnode
REAL,ALLOCATABLE,DIMENSION(:,:),INTENT(in)::NODES_LIST
rnode=n_node
CORDINATES2(1)=sum(nodes_list(1:n_node,1))/rnode
CORDINATES2(2)=sum(nodes_list(1:n_node,2))/rnode
end function CORDINATES2
REAL FUNCTION CELL_CENTRE_CORD2(N,CORDS,NODES_LIST,N_NODE)
!> @brief
!> This function computes the centre of 2d element
IMPLICIT NONE
INTEGER,INTENT(IN)::N,N_NODE
REAL,ALLOCATABLE,DIMENSION(:),INTENT(OUT)::CORDS
REAL,ALLOCATABLE,DIMENSION(:,:),INTENT(in)::NODES_LIST
cords(1)=sum(nodes_list(1:n_node,1))/n_node
cords(2)=sum(nodes_list(1:n_node,2))/n_node
CELL_CENTRE_CORD2=cords(1)
end function CELL_CENTRE_CORD2
FUNCTION comp_max_diff(N,NODES_LIST,N_NODE)
!> @brief
!> This function computes the maximum coordinates value given the nodes location
INTEGER,INTENT(IN)::N,N_NODE
REAL,ALLOCATABLE,DIMENSION(:,:),INTENT(in)::NODES_LIST
REAL,DIMENSION(1:2)::comp_max_diff
INTEGER::Idex
REAL,DIMENSION(1:2)::tempDIFF
tempDiff=0.0d0
comp_max_diff(1:2)=0.0d0
DO Idex=2,N_NODE
tempDIFF(1)=abs(nodes_list(1,1)-nodes_list(Idex,1))
tempDIFF(2)=abs(nodes_list(1,2)-nodes_list(Idex,2))
if (tempDiff(1).gt.comp_max_diff(1)) then
comp_max_diff(1)=tempDiff(1)
end if
if (tempDiff(2).gt.comp_max_diff(2)) then
comp_max_diff(2)=tempDiff(2)
end if
END DO
END FUNCTION COMP_MAX_DIFF
FUNCTION comp_min_diff(N,NODES_LIST,N_NODE)
!> @brief
!> This function computes the minimum coordinates value given the nodes location
INTEGER,INTENT(IN)::N,N_NODE
REAL,ALLOCATABLE,DIMENSION(:,:),INTENT(in)::NODES_LIST
REAL,DIMENSION(1:2)::comp_min_diff
INTEGER::Idex
REAL,DIMENSION(1:2)::tempDIFF
tempDiff=0.0d0
comp_min_diff(1:2)=0.0d0
DO Idex=2,N_NODE
tempDIFF(1)=abs(nodes_list(1,1)-nodes_list(Idex,1))
tempDIFF(2)=abs(nodes_list(1,2)-nodes_list(Idex,2))
if (tempDiff(1).lt.comp_min_diff(1)) then
comp_min_diff(1)=tempDiff(1)
end if
if (tempDiff(2).lt.comp_min_diff(2)) then
comp_min_diff(2)=tempDiff(2)
end if
END DO
END FUNCTION COMP_MIN_DIFF
SUBROUTINE DECOMPOSE3
!> @brief
!> This function decomposes element into tetrahedrals (counterclockwise numbering)
IMPLICIT NONE
ELEM_LISTD(:,:,:)=zero
SELECT CASE(ELTYPE)
CASE(1)
ELEM_LISTD(1,1,:)=NODES_LIST(1,:);ELEM_LISTD(1,2,:)=NODES_LIST(6,:);ELEM_LISTD(1,3,:)=NODES_LIST(8,:);ELEM_LISTD(1,4,:)=NODES_LIST(5,:)
ELEM_LISTD(2,1,:)=NODES_LIST(1,:);ELEM_LISTD(2,2,:)=NODES_LIST(2,:);ELEM_LISTD(2,3,:)=NODES_LIST(8,:);ELEM_LISTD(2,4,:)=NODES_LIST(6,:)
ELEM_LISTD(3,1,:)=NODES_LIST(2,:);ELEM_LISTD(3,2,:)=NODES_LIST(7,:);ELEM_LISTD(3,3,:)=NODES_LIST(8,:);ELEM_LISTD(3,4,:)=NODES_LIST(6,:)
ELEM_LISTD(4,1,:)=NODES_LIST(1,:);ELEM_LISTD(4,2,:)=NODES_LIST(8,:);ELEM_LISTD(4,3,:)=NODES_LIST(3,:);ELEM_LISTD(4,4,:)=NODES_LIST(4,:)
ELEM_LISTD(5,1,:)=NODES_LIST(1,:);ELEM_LISTD(5,2,:)=NODES_LIST(8,:);ELEM_LISTD(5,3,:)=NODES_LIST(2,:);ELEM_LISTD(5,4,:)=NODES_LIST(3,:)
ELEM_LISTD(6,1,:)=NODES_LIST(2,:);ELEM_LISTD(6,2,:)=NODES_LIST(8,:);ELEM_LISTD(6,3,:)=NODES_LIST(7,:);ELEM_LISTD(6,4,:)=NODES_LIST(3,:)
CASE(2)
ELEM_LISTD(1,1,1:3)=NODES_LIST(1,1:3);ELEM_LISTD(1,2,1:3)=NODES_LIST(2,1:3);ELEM_LISTD(1,3,1:3)=NODES_LIST(3,1:3);ELEM_LISTD(1,4,1:3)=NODES_LIST(4,1:3)
CASE(3)
ELEM_LISTD(1,1,:)=NODES_LIST(1,:);ELEM_LISTD(1,2,:)=NODES_LIST(2,:);ELEM_LISTD(1,3,:)=NODES_LIST(3,:);ELEM_LISTD(1,4,:)=NODES_LIST(5,:)
ELEM_LISTD(2,1,:)=NODES_LIST(1,:);ELEM_LISTD(2,2,:)=NODES_LIST(3,:);ELEM_LISTD(2,3,:)=NODES_LIST(4,:);ELEM_LISTD(2,4,:)=NODES_LIST(5,:)
CASE(4)
! ELEM_LISTD(1,1,:)=NODES_LIST(1,:);ELEM_LISTD(1,2,:)=NODES_LIST(3,:);ELEM_LISTD(1,3,:)=NODES_LIST(2,:);ELEM_LISTD(1,4,:)=NODES_LIST(4,:)
! ELEM_LISTD(2,1,:)=NODES_LIST(4,:);ELEM_LISTD(2,2,:)=NODES_LIST(3,:);ELEM_LISTD(2,3,:)=NODES_LIST(5,:);ELEM_LISTD(2,4,:)=NODES_LIST(6,:)
! ELEM_LISTD(3,1,:)=NODES_LIST(3,:);ELEM_LISTD(3,2,:)=NODES_LIST(5,:);ELEM_LISTD(3,3,:)=NODES_LIST(2,:);ELEM_LISTD(3,4,:)=NODES_LIST(4,:)
ELEM_LISTD(1,1,:)=NODES_LIST(1,:);ELEM_LISTD(1,2,:)=NODES_LIST(2,:);ELEM_LISTD(1,3,:)=NODES_LIST(3,:);ELEM_LISTD(1,4,:)=NODES_LIST(6,:)
ELEM_LISTD(2,1,:)=NODES_LIST(1,:);ELEM_LISTD(2,2,:)=NODES_LIST(2,:);ELEM_LISTD(2,3,:)=NODES_LIST(6,:);ELEM_LISTD(2,4,:)=NODES_LIST(5,:)
ELEM_LISTD(3,1,:)=NODES_LIST(1,:);ELEM_LISTD(3,2,:)=NODES_LIST(5,:);ELEM_LISTD(3,3,:)=NODES_LIST(6,:);ELEM_LISTD(3,4,:)=NODES_LIST(4,:)
END SELECT
! SELECT CASE(ELTYPE)
!
! CASE(1)
! ELEM_LISTD(1,1,:)=NODES_LIST(5,:);ELEM_LISTD(1,2,:)=NODES_LIST(7,:);ELEM_LISTD(1,3,:)=NODES_LIST(8,:);ELEM_LISTD(1,4,:)=NODES_LIST(4,:)
! ELEM_LISTD(2,1,:)=NODES_LIST(5,:);ELEM_LISTD(2,2,:)=NODES_LIST(6,:);ELEM_LISTD(2,3,:)=NODES_LIST(7,:);ELEM_LISTD(2,4,:)=NODES_LIST(4,:)
! ELEM_LISTD(3,1,:)=NODES_LIST(6,:);ELEM_LISTD(3,2,:)=NODES_LIST(3,:);ELEM_LISTD(3,3,:)=NODES_LIST(7,:);ELEM_LISTD(3,4,:)=NODES_LIST(4,:)
! ELEM_LISTD(4,1,:)=NODES_LIST(1,:);ELEM_LISTD(4,2,:)=NODES_LIST(5,:);ELEM_LISTD(4,3,:)=NODES_LIST(4,:);ELEM_LISTD(4,4,:)=NODES_LIST(2,:)
! ELEM_LISTD(5,1,:)=NODES_LIST(5,:);ELEM_LISTD(5,2,:)=NODES_LIST(2,:);ELEM_LISTD(5,3,:)=NODES_LIST(6,:);ELEM_LISTD(5,4,:)=NODES_LIST(4,:)
! ELEM_LISTD(6,1,:)=NODES_LIST(4,:);ELEM_LISTD(6,2,:)=NODES_LIST(3,:);ELEM_LISTD(6,3,:)=NODES_LIST(2,:);ELEM_LISTD(6,4,:)=NODES_LIST(6,:)
!
!
! CASE(2)
! ELEM_LISTD(1,1,1:3)=NODES_LIST(1,1:3);ELEM_LISTD(1,2,1:3)=NODES_LIST(3,1:3);ELEM_LISTD(1,3,1:3)=NODES_LIST(2,1:3);ELEM_LISTD(1,4,1:3)=NODES_LIST(4,1:3)
! CASE(3)
! ELEM_LISTD(1,1,:)=NODES_LIST(1,:);ELEM_LISTD(1,2,:)=NODES_LIST(4,:);ELEM_LISTD(1,3,:)=NODES_LIST(2,:);ELEM_LISTD(1,4,:)=NODES_LIST(5,:)
! ELEM_LISTD(2,1,:)=NODES_LIST(2,:);ELEM_LISTD(2,2,:)=NODES_LIST(4,:);ELEM_LISTD(2,3,:)=NODES_LIST(3,:);ELEM_LISTD(2,4,:)=NODES_LIST(5,:)
!
!
!
!
! CASE(4)
! !1324 !4356 !3524
!
!
!
! ELEM_LISTD(1,1,1:3)=NODES_LIST(1,1:3);ELEM_LISTD(1,2,1:3)=NODES_LIST(3,1:3);ELEM_LISTD(1,3,1:3)=NODES_LIST(2,1:3);ELEM_LISTD(1,4,1:3)=NODES_LIST(4,1:3)
! ELEM_LISTD(2,1,1:3)=NODES_LIST(4,1:3);ELEM_LISTD(2,2,1:3)=NODES_LIST(3,1:3);ELEM_LISTD(2,3,1:3)=NODES_LIST(5,1:3);ELEM_LISTD(2,4,1:3)=NODES_LIST(6,1:3)
! ELEM_LISTD(3,1,1:3)=NODES_LIST(3,1:3);ELEM_LISTD(3,2,1:3)=NODES_LIST(5,1:3);ELEM_LISTD(3,3,1:3)=NODES_LIST(2,1:3);ELEM_LISTD(3,4,1:3)=NODES_LIST(4,1:3)
!
!
!
!
!
! END SELECT
end SUBROUTINE DECOMPOSE3
subroutine DECOMPOSE2
!> @brief
!> This function writes decomposed triangle element nodes into ELEM_LISTD from NODES_LIST (counterclockwise numbering)
implicit none
!!$OMP THREADPRIVATE(DECOMPOSE2)
SELECT CASE(ELTYPE)
CASE(5)
ELEM_LISTD(1,1,1:2)=NODES_LIST(1,1:2);ELEM_LISTD(1,2,1:2)=NODES_LIST(2,1:2);ELEM_LISTD(1,3,1:2)=NODES_LIST(3,1:2)
ELEM_LISTD(2,1,1:2)=NODES_LIST(1,1:2);ELEM_LISTD(2,2,1:2)=NODES_LIST(3,1:2);ELEM_LISTD(2,3,1:2)=NODES_LIST(4,1:2)
CASE(6)
ELEM_LISTD(1,1,1:2)=NODES_LIST(1,1:2);ELEM_LISTD(1,2,1:2)=NODES_LIST(2,1:2);ELEM_LISTD(1,3,1:2)=NODES_LIST(3,1:2)
END SELECT
end subroutine DECOMPOSE2
SUBROUTINE EDGE_CALCULATOR(N)
!> @brief
!> This subroutine computes the radius of inscribed sphere or circle
IMPLICIT NONE
INTEGER,INTENT(IN)::N
INTEGER::I,KMAXE,L
REAL::EDGEL,DIST
KMAXE=XMPIELRANK(N)
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(I)
IF (DIMENSIONA.EQ.3)THEN
!$OMP DO SCHEDULE (STATIC)
DO I=1,KMAXE
ICONSIDERED=I
IELEM(N,I)%MINEDGE=(3.0D0*IELEM(N,I)%TOTVOLUME)/(SUM(IELEM(N,I)%SURF(1:IELEM(N,I)%IFCA)))
DO L=1,IELEM(N,I)%IFCA
FACEX=L
CALL coordinates_face_inner(N,Iconsidered,facex)
VEXT(2,1:3)=CORDINATES3(N,NODES_LIST,N_NODE)
VEXT(1,1)=IELEM(N,I)%XXC;VEXT(1,2)=IELEM(N,I)%YYC; VEXT(1,3)=IELEM(N,I)%ZZC
DIST=DISTANCE3(N)
! IELEM(N,I)%MINEDGE=DIST
IELEM(N,I)%MINEDGE=MIN(DIST,IELEM(N,I)%MINEDGE)
!
! ! IELEM(N,I)%MINEDGE=dist*2
END DO
END DO
!$OMP END DO
ELSE
!$OMP DO SCHEDULE (STATIC)
DO I=1,KMAXE
ICONSIDERED=I
IELEM(N,I)%MINEDGE=(2.0D0*IELEM(N,I)%TOTVOLUME)/(SUM(IELEM(N,I)%SURF(1:IELEM(N,I)%IFCA)))
DO L=1,IELEM(N,I)%IFCA
FACEX=L
CALL coordinates_face_inner2D(N,Iconsidered,facex)
VEXT(2,1:2)=CORDINATES2(N,NODES_LIST,N_NODE)
VEXT(1,1)=IELEM(N,I)%XXC;VEXT(1,2)=IELEM(N,I)%YYC;
DIST=DISTANCE2(N)
IELEM(N,I)%MINEDGE=MIN(DIST,IELEM(N,I)%MINEDGE)
END DO
END DO
!$OMP END DO
END IF
!$OMP END PARALLEL
END SUBROUTINE EDGE_CALCULATOR
SUBROUTINE VOLUME_CALCULATOR3(N)
!> @brief
!> This subroutine computes the volume of elements
IMPLICIT NONE
INTEGER,INTENT(IN)::N
!$ integer::OMP_IN_PARALLEL,OMP_GET_THREAD_NUM
INTEGER::I,K,KMAXE,jx,JX2
real::DUMV1,DUMV2,dumv3,DUMV5
KMAXE=XMPIELRANK(N)
DUMV5=ZERO
!$OMP PARALLEL DEFAULT(SHARED) PRIVATE(DUMV1,DUMV2,I,JX,jx2,K)
!$OMP DO
DO I=1,KMAXE
VEXT=0.0d0
NODES_LIST=0.0d0
ELTYPE=IELEM(N,I)%ISHAPE
ELEM_DEC=IELEM(N,I)%VDEC
ELEM_LISTD=0.0d0
IELEM(N,I)%TOTVOLUME=0.0d0
jx=IELEM(N,I)%NONODES
do K=1,jx
JX2=IELEM(N,I)%NODES(k)
NODES_LIST(k,:)=inoder(JX2)%CORD(:)
VEXT(K,:)=NODES_LIST(k,:)
END DO
CALL DECOMPOSE3!(N,ELTYPE,ELEM_DEC)
SELECT CASE(ielem(n,i)%ishape)
CASE(1)
CALL QUADRATUREHEXA(N,IGQRULES)
DUMV1=HEXAVOLUME(N)
DUMV2=0.0d0
do K=1,ELEM_DEC
VEXT(1:4,1:3)=ELEM_LISTD(k,1:4,1:3)
DUMV2=DUMV2+TETRAVOLUME(N)
END DO
IF (ABS(DUMV2-DUMV1).LE.(0.001d0*ABS(DUMV2)))THEN
IELEM(N,I)%TOTVOLUME=DUMV1
IELEM(N,I)%MODE=0
ELSE
IELEM(N,I)%TOTVOLUME=DUMV2
IELEM(N,I)%MODE=1
END IF
IF (DUMV1.LE.ZERO)THEN
IELEM(N,I)%MODE=1
IELEM(N,I)%TOTVOLUME=DUMV2
END IF
ielem(n,i)%mode=1
IELEM(N,I)%TOTVOLUME=DUMV2
CASE(2)
VEXT(1:4,1:3)=ELEM_LISTD(1,1:4,1:3)
IELEM(N,I)%TOTVOLUME=TETRAVOLUME(N)
IELEM(N,I)%MODE=1
CASE(3)
CALL QUADRATUREPYRA(N,IGQRULES)
DUMV1=PYRAVOLUME(N)
DUMV2=0.0d0
do K=1,ELEM_DEC
VEXT(1:4,1:3)=ELEM_LISTD(k,1:4,1:3)
dumv3=TETRAVOLUME(N)
DUMV2=DUMV2+TETRAVOLUME(N)
END DO
IELEM(N,I)%TOTVOLUME=DUMV2
IELEM(N,I)%MODE=1
CASE(4)
CALL QUADRATUREPRISM(N,IGQRULES)
DUMV1=PRISMVOLUME(N)
DUMV2=0.0d0
do K=1,ELEM_DEC
VEXT(1:4,1:3)=ELEM_LISTD(k,1:4,1:3)
dumv3=TETRAVOLUME(N)
DUMV2=DUMV2+TETRAVOLUME(N)
END DO
IF (ABS(DUMV2-DUMV1).LE.(0.001d0*ABS(DUMV2)))THEN
IELEM(N,I)%TOTVOLUME=DUMV1
IELEM(N,I)%MODE=0
ELSE
IELEM(N,I)%TOTVOLUME=DUMV2
IELEM(N,I)%MODE=1
END IF