-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathunbounded_inference.py
220 lines (145 loc) · 7.42 KB
/
unbounded_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
import os, sys, gc,argparse
import libs.network_infer
import torch.optim as optim
from torchvision.utils import save_image
from _datetime import datetime
from libs.compute import *
from libs.constant import *
from libs.model import *
from libs.network_infer import *
data_max_image_size=16 * 64 * 2
data_image_size=512
data_patch_size=16*64
#data_patch_size=16*32
data_padrf_size=64
# def normalizeImage(img, max_length):
# #print(current_time() + ', [normalizeImage]')
# [height, width, channels] = img.shape
# #print(current_time() + ', original shape = [%d, %d, %d]' % (height, width, channels))
# max_l = max(height, width)
# is_need_resize = max_l != data_image_size
# if is_need_resize:
# use_gpu = False
# if use_gpu and is_downsample:
# # gpu
# new_h, new_w, is_normalize = get_normalize_size_shape_method(img, max_length)
# # if not is_normalize:
# # dict_d = [img, new_h, new_w]
# # dict_t = [tf_input_img_ori, tf_img_new_h, tf_img_new_w]
# # img = sess.run(tf_resize_img, feed_dict={t:d for t, d in zip(dict_t, dict_d)})
# else:
# # cpu
# img = cpu_normalize_image(img, max_length)
# return img
from PIL import Image
from numpy import array
def get_normalize_size_shape_method(img, max_length):
[ height, width, channels ] = img.shape
if height >= width:
longerSize = height
shorterSize = width
else:
longerSize = width
shorterSize = height
scale = float(max_length) / float(longerSize)
outputHeight = int(round(height*scale))
outputWidth = int(round(width*scale))
return outputHeight, outputWidth
def getInputPhoto(file_name):
print(current_time() + ', [getInputPhoto]: file_name = %s' % (FLAGS['folder_input'] + file_name))
file_name_without_ext = os.path.splitext(file_name)[0]
input_img = cv2.imread(FLAGS['folder_input'] + file_name, 1)
os.remove(FLAGS['folder_input'] + file_name)
if checkValidImg(input_img):
h, w, _ = input_img.shape
resize_input_img = normalizeImage(input_img, data_max_image_size) if max(h, w) > data_max_image_size else input_img
#file_name = file_name_without_ext + FLAGS['data_output_ext']
#cv2.imwrite(FLAGS['folder_input'] + file_name, resize_input_img)
cv2.imwrite(FLAGS['folder_input'] + file_name_without_ext + '.jpg', resize_input_img)
os.rename(FLAGS['folder_input'] + file_name_without_ext + '.jpg', FLAGS['folder_input'] + file_name)
return file_name
else:
return None
def processImg(file_in_name, file_out_name,generator_model):
#print(current_time() + ', [processImg]: file_name = %s' % (FLAGS['folder_input'] + file_in_name))
file_out_name_without_ext = os.path.splitext(file_out_name)[0]
input_img = np.array( Image.open(file_in_name))
#resize_input_img = normalizeImage(input_img, data_image_size)
#resize_input_img, _, _ = random_pad_to_size(resize_input_img, data_image_size, None, True, False)
#resize_input_img = resize_input_img[None, :, :, :]
# dict_d = [resize_input_img, 1]
# dict_t = [test_df.input1_src, test_df.rate]
# gfeature = sess.run(netG_test_gfeature1, feed_dict={t:d for t, d in zip(dict_t, dict_d)})
h, w, c = input_img.shape
rate = int(round(max(h, w) / data_image_size))
if rate == 0:
rate = 1
generator = GeneratorWDilation(1)
#generator = nn.DataParallel(generator)
module_dict=torch.load(generator_model, map_location=device)
# module_dict=torch.load('/home/felipe/deep-photo-enhancer-master/models/train_checkpoint/2Way/gan2_train_92_60.pth')
generator.load_state_dict(module_dict)
generator = GeneratorWDilationamp(generator,rate)
generator = nn.DataParallel(generator)
if torch.cuda.is_available():
generator.cuda(device=device)
generator.eval()
padrf = rate * data_padrf_size
patch = data_patch_size
pad_h = 0 if h % patch == 0 else patch - (h % patch)
pad_w = 0 if w % patch == 0 else patch - (w % patch)
pad_h = pad_h + padrf if pad_h < padrf else pad_h
pad_w = pad_w + padrf if pad_w < padrf else pad_w
input_img = np.pad(input_img, [ (padrf, pad_h),(padrf, pad_w), (0, 0)], 'reflect')
input_img=input_img.transpose((2,0,1))
input_img = input_img / 255
y_list = []
#process for each chunk
for y in range(padrf, h+padrf, patch):
x_list = []
for x in range(padrf, w+padrf, patch):
crop_img = input_img[None,:,y-padrf:y+padrf+patch, x-padrf:x+padrf+patch]
# dict_d = [crop_img, gfeature, rate]
# dict_t = [test_df.input1_src, test_df.input2, test_df.rate]
#pad to full image here
#enhance_test_img = sess.run(netG_test_dilation_list[min(9, rate-1)], feed_dict={t:d for t, d in zip(dict_t, dict_d)})
#crop_img = torch.Tensor(crop_img)
crop_img = Variable(torch.Tensor(crop_img).type(Tensor_gpu))
enhance_test_img = generator(crop_img)
enhance_test_img = enhance_test_img[:,:, padrf:-padrf, padrf:-padrf]
x_list.append(enhance_test_img.detach().cpu())
# x_list.append(enhance_test_img.detach().cpu().numpy() )
y_list.append(torch.cat(x_list, axis=3))
#y_list.append(np.concatenate(x_list, axis=2))
enhance_test_img = torch.cat(y_list, axis=2)
#enhance_test_img = np.concatenate(y_list, axis=3)
enhance_test_img = enhance_test_img[:,:,:h, :w]
#enhance_test_img = safe_casting(enhance_test_img * tf.as_dtype(FLAGS['data_input_dtype']).max, FLAGS['data_input_dtype'])
#enhanced_img_file_name = file_out_name_without_ext + FLAGS['data_output_ext']
#enhance_img_file_path = folder_test_img + enhanced_img_file_name
#try:
# print(current_time() + ', try remove file path = %s' % enhance_img_file_path)
# os.remove(enhance_img_file_path)
#except OSError as e:
# print(current_time() + ', remove fail, error = %s' % e.strerror)
#cv2.imwrite(enhance_img_file_path, enhance_test_img)
save_image( enhance_test_img, file_out_name_without_ext + '.jpg')
#rescaled = (255.0 / enhance_test_img.max() * (enhance_test_img - enhance_test_img.min())).astype(np.uint8)
# arr = 255 * np.ascontiguousarray(enhance_test_img[0].transpose(1,2,0))
#img = Image.fromarray(arr, 'RGB')
#im = Image.fromarray(rescaled)
#im.save( file_out_name_without_ext + '.jpg')
# cv2.imwrite( file_out_name_without_ext + '.jpg', enhance_test_img[0])
#os.rename( file_out_name_without_ext + '.jpg', enhance_img_file_path)
#return enhanced_img_file_name
parser = argparse.ArgumentParser(description="train 3DCAE net",
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument('--generator_model', type=str, default='gan2_train_28_40.pth',
help='train, test.')
parser.add_argument('--input_image', type=str, default='./images_LR/images-2.jpg',
help='train, test.')
parser.add_argument('--output_image', type=str, default='./images_LR/images-2inferred.jpg',
help='1000 is ok')
if __name__ == "__main__":
args = parser.parse_args()
processImg(args.input_image,args.output_image,args.generator_model)