-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathActivators.py
186 lines (158 loc) · 4.81 KB
/
Activators.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
'''
Activators.py文件构建激活函数的前向,反向传播计算
'''
import numpy as np
from Module import Module
'''
Square
'''
class Square(Module):
def __init__(self):
super(Square, self).__init__()
# 设置module打印格式
def extra_repr(self):
s = ()
return s
# 前向传播
def forward(self, input_array):
# 求平方,做激活函数??
self.input_array = input_array
return self.input_array**2
def gradient(self, eta):
self.eta_next = eta*2*self.input_array
return self.eta_next
'''
ReLU
'''
class ReLU(Module):
def __init__(self):
super(ReLU, self).__init__()
# 反向传播需要使用
# self.input_array = np.zeros(input_shape)
# self.eta = np.zeros(input_shape)
# 设置module打印格式
def extra_repr(self):
s = ()
return s
# 前向传播
def forward(self, input_array):
self.input_array = input_array
# 使用0和input_array的元素依次比较
# np.maximum:(X, Y, out=None) X与Y逐位比较取其大者
return np.maximum(self.input_array, 0)
# 反向传播
# relu'(x)=1*dy if x>0
# relu'(x)=0*dy if x<0
# relu'(x)不存在 if x=0.0000... (代码实现里将=0的结果设置为1)
def gradient(self, eta):
self.eta_next = eta
self.eta_next[self.input_array<0]=0
# self.eta_next[self.input_array==0]=1 # 将等于0的数据导数设置为1,看看能不能解决梯度消失的问题
return self.eta_next
'''
LeakyReLU
'''
class LeakyReLU(Module):
def __init__(self, alpha1=0.01):
# self.input_array = np.zeros(input_shape)
# self.eta = np.zeros(input_shape)
super(LeakyReLU, self).__init__()
self.alpha1 = alpha1
# 设置module打印格式
def extra_repr(self):
s = ('alpha={alpha1}')
return s.format(**self.__dict__)
# 前向传播
# leakyrelu(x)=x if x>0
# leakyrelu(x)=ax if x<=0
def forward(self, input_array):
self.input_array = input_array
self.output_array = self.input_array.copy()
self.output_array[self.input_array<0] *= self.alpha1
return self.output_array
# 反向传播
def gradient(self, eta):
self.eta_next = eta
# print('eta shape: ',eta.shape)
self.eta_next[self.input_array<=0] *= self.alpha1
return self.eta_next
'''
Sigmoid
'''
class Sigmoid(Module):
def __init__(self):
super(Sigmoid, self).__init__()
# 设置module打印格式
def extra_repr(self):
s = ()
return s
# 1/(1+e^-x)
def forward(self, input_array):
self.output_array = 1/(1+np.exp(-input_array))
return self.output_array
def gradient(self, eta):
self.eta_next = eta * self.output_array*(self.output_array-1) # d(sigmoid)=y*(1-y)
return self.eta_next
class Sigmoid_CE(Module):
def __init__(self):
super(Sigmoid_CE, self).__init__()
# 设置module打印格式
def extra_repr(self):
s = ()
return s
# 1/(1+e^-x)
def forward(self, input_array):
self.output_array = 1/(1+np.exp(-input_array))
return self.output_array
def gradient(self, eta):
n_dim = self.output_array.ndim
for i in range(n_dim-1):
eta = eta[:,np.newaxis]
# eta = y, grad = sigmoid(x)-y
self.eta_next = self.output_array - eta
self.eta_next /= self.output_array.shape[0] # 需要求平均
# print('sigmoid eta shape: \n', eta.shape)
# print('sigmoid output_array shape: \n', self.output_array.shape)
return self.eta_next
'''
tanh
'''
class Tanh(Module):
def __init__(self):
super(Tanh, self).__init__()
# 设置module打印格式
def extra_repr(self):
s = ()
return s
# tanh=2*sigmoid(2x)-1
def forward(self, input_array):
self.output_array = 2/(1+np.exp(-2*input_array))-1
return self.output_array
def gradient(self, eta):
self.eta_next = eta * (1-self.output_array**2)
return self.eta_next
def test_leakyrelu():
x = np.random.randn(1,1,4,4).astype(np.float32)
dy = np.random.randn(1,1,4,4).astype(np.float32)
print('x: \n', x)
print('dy: \n', dy)
lrelu = LeakyReLU()
l_out = lrelu.forward(x)
l_eta = lrelu.gradient(dy)
print(l_out)
print('----------')
print(l_eta)
def test_relu():
x = np.random.randn(1,1,4,4).astype(np.float32)
dy = np.random.randn(1,1,4,4).astype(np.float32)
print('x: \n', x)
print('dy: \n', dy)
relu = ReLU()
l_out = relu.forward(x)
l_eta = relu.gradient(dy)
print(l_out)
print('----------')
print(l_eta)
if __name__ == "__main__":
test_leakyrelu()
# test_relu()