-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathcomponent_verify.py
733 lines (587 loc) · 25.2 KB
/
component_verify.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
'''
component_verify.py 使用pytorch构建CNN网络及其组件,并验证numpy实现CNN(重构)的组件的正确性
-- 卷积计算Conv
-- 激活层AC
-- 批量标准化层BN
-- 全连接层FC
-- 池化层Pooling
-- 损失函数CrossEntropyLoss
-- 反卷积层Deconv
'''
import torch
import torch.nn as nn
from torch.nn import functional as F
import Loss
import Logsoftmax
import Conv
import Pool
import Activators
import FC
import BN
import Deconv
import numpy as np
from Parameter import Parameter
import time
'''
验证:损失函数CrossEntropyLoss(成功)
'''
def loss_test():
# input=[batch, 3],表示每个batch中对每个类的预测值,总共有3类数据
x_input = torch.randn(6, 3, requires_grad=True)
x_input_numpy = x_input.detach().numpy()
print('x_input: ',x_input)
# print('x_input_numpy: ',x_input_numpy)
# target=[batch] 表示每个数据分类的标签
# y_target = torch.tensor([[1,0,0,0,0],[0,0,1,0,0],[0,0,0,1,0],[1,0,0,0,0],[0,0,0,0,1]])
y_target = torch.tensor([0,2,1,0,1,2])
y_target_numpy = y_target.detach().numpy()
print('y_target: ',y_target)
print('y_target_numpy: ',y_target_numpy)
# 初始化LogSoftmax类
logsoftmax_tensor = nn.LogSoftmax(dim=1)
logsoftmax_output_tensor = logsoftmax_tensor(x_input)
logsoftmax_numpy = Logsoftmax.Logsoftmax()
logsoftmax_output_numpy = logsoftmax_numpy.forward(x_input_numpy)
print('-----对比输出-----')
print('logsoftmax_output_tensor: \n',logsoftmax_output_tensor)
print('logsoftmax_output_numpy: \n',logsoftmax_output_numpy)
loss_tensor = nn.NLLLoss()
cross_entropy_loss_output_tensor = loss_tensor(logsoftmax_output_tensor, y_target)
cross_entropy_loss_output_tensor.backward()
loss_grad_tensor = x_input.grad
loss_numpy = Loss.NLLLoss()
cross_entropy_loss_output_numpy = loss_numpy.cal_loss(logsoftmax_output_numpy, y_target_numpy)
eta = loss_numpy.gradient()
print('eta: \n', eta)
loss_grad_numpy = logsoftmax_numpy.gradient(eta)
print('-----前向传播-----')
print('cross_entropy_loss_output_tensor: \n',cross_entropy_loss_output_tensor)
print('cross_entropy_loss_output_numpy: \n',cross_entropy_loss_output_numpy)
print('-----反向传播-----')
print('loss_grad_tensor: \n',loss_grad_tensor)
print('loss_grad_numpy: \n',loss_grad_numpy)
'''
# softmax (成功)
softmax_func = nn.Softmax(dim=1)
softmax_output = softmax_func(x_input)
print('softmax_output: \n',softmax_output)
softmax_output_numpy = softmax_numpy.predict(x_input_numpy)
print('softmax_output_numpy: \n',softmax_output_numpy)
'''
'''
# softmax+cross entropy (成功)
cross_entropy_loss = nn.CrossEntropyLoss()
output = cross_entropy_loss(x_input, y_target)
eta = output.backward()
print('cross_entropy_output: \n',output)
print('grad_output: \n',x_input.grad)
cross_entropy_loss_numpy = softmax_numpy.cal_loss(x_input_numpy, y_target_numpy)
eta_numpy = softmax_numpy.gradient_with_loss()
print('cross_entropy_loss_numpy: \n',cross_entropy_loss_numpy)
print('grad_output_numpy: \n',eta_numpy)
'''
'''
验证:卷积计算Conv(成功)
测试了多种条件(stride,padding,batch)变化下的卷积正确性
测试时需要注释掉Conv.py中的kaiming初始化
'''
def conv_test():
# 自定义卷积核和偏移量,使用pytorch计算卷积,和反向传播结果
"""手动定义卷积核(weight)和偏置"""
w = torch.rand(5, 3, 3, 3) # 5种3通道的3乘3卷积核
b = torch.rand(5) # 和卷积核种类数保持一致(不同通道共用一个bias)
w_numpy = w.detach().numpy()
b_numpy = b.detach().numpy()
w_2 = torch.rand(5, 5, 3, 3) # 5种5通道的3乘3卷积核
b_2 = torch.rand(5) # 和卷积核种类数保持一致(不同通道共用一个bias)
w_numpy_2 = w_2.detach().numpy()
b_numpy_2 = b_2.detach().numpy()
"""定义输入样本"""
# 单张图片输入
x = torch.tensor(np.random.randn(3, 3, 5, 5).astype(np.float32), requires_grad=True) # 1张3通道的5乘5的图像
# 多张图片输入
# x = torch.tensor(np.random.randn(2, 3, 5, 5).astype(np.float32), requires_grad=True) # 2张3通道的5乘5的图像
x_numpy = x.detach().numpy()
print('-------参数打印-------')
# print('w: \n', w_numpy)
# print('b: \n', b_numpy)
# print('x: \n', x_numpy)
"""前向传播"""
# pytorch计算卷积前向传播
## padding=0 stride=0
# cl_tensor = torch.nn.Conv2d(3, 5, kernel_size=3, stride=1, padding=0)
## padding=1 stride=1
cl_tensor_1 = torch.nn.Conv2d(3, 5, kernel_size=3, stride=1, padding=1)
## stride=2 padding=0
# cl_tensor_1 = torch.nn.Conv2d(3, 5, kernel_size=3, stride=2, padding=0)
## stride=2 padding=1
# cl_tensor = torch.nn.Conv2d(3, 5, kernel_size=3, stride=2, padding=1)
## stride=1 padding=2
# cl_tensor_1 = torch.nn.Conv2d(3, 5, kernel_size=3, stride=1, padding=2)
cl_tensor_2 = torch.nn.Conv2d(5, 5, kernel_size=3, stride=1, padding=0)
cl_tensor_1.weight = torch.nn.Parameter(w, requires_grad=True)
cl_tensor_1.bias = torch.nn.Parameter(b, requires_grad=True)
cl_tensor_2.weight = torch.nn.Parameter(w_2, requires_grad=True)
cl_tensor_2.bias = torch.nn.Parameter(b_2, requires_grad=True)
conv_out_tensor_1 = cl_tensor_1(x)
conv_out_tensor_2 = cl_tensor_2(conv_out_tensor_1)
# numpy计算卷积前向传播
## padding=0 stride=0
# cl1 = Conv.ConvLayer(3, 5, 3, 3, zero_padding=0, stride=1, method='VALID')
## padding=1 stride=1
cl1 = Conv.ConvLayer(3, 5, 3, 3, zero_padding=1, stride=1, method='SAME')
## stride=2 padding=0
# cl1 = Conv.ConvLayer(3, 5, 3, 3, zero_padding=0, stride=2, method='VALID')
## stride=2 padding=1
# cl1 = Conv.ConvLayer(3, 5, 3,3, zero_padding=1, stride=2, method='SAME')
## stride=1 padding=2
# cl1 = Conv.ConvLayer(3, 5, 3,3, zero_padding=2, stride=1, method='SAME')
cl2 = Conv.ConvLayer(5, 5, 3,3, zero_padding=0, stride=1, method='VALID')
cl1.set_weight(Parameter(w_numpy, requires_grad=True))
cl1.set_bias(Parameter(b_numpy, requires_grad=True))
cl2.set_weight(Parameter(w_numpy_2, requires_grad=True))
cl2.set_bias(Parameter(b_numpy_2, requires_grad=True))
conv_out_numpy_1 = cl1.forward(x_numpy) # forward
print('conv_out_numpy_1.shape: ',conv_out_numpy_1.shape)
conv_out_numpy_2 = cl2.forward(conv_out_numpy_1)
print('conv_out_numpy_2.shape: ',conv_out_numpy_2.shape)
# 输出结果对比
print('-----对比输出-----')
print('conv_out_tensor_1: \n', conv_out_tensor_1[0][0])
# print('conv_out_tensor_1.shape: \n', conv_out_tensor_1.shape)
# print('conv_out_numpy_1: \n', conv_out_numpy_1)
# print('conv_out_numpy_1.shape: \n', conv_out_numpy_1.shape)
print('conv_out_1 error: \n', conv_out_numpy_1-conv_out_tensor_1.detach().numpy())
print('conv_out_tensor_2: \n', conv_out_tensor_2[0][0])
# print('conv_out_tensor_2.shape: \n', conv_out_tensor_2.shape)
print('conv_out_numpy_2: \n', conv_out_numpy_2[0][0])
# print('conv_out_numpy_2.shape: \n', conv_out_numpy_2.shape)
print('conv_out_2 error: \n', conv_out_numpy_2-conv_out_tensor_2.detach().numpy())
# print('conv_out_2 weight error: \n', cl2.weights.data-cl_tensor_2.weight.detach().numpy())
# print('conv_out_2 bias error: \n', cl2.bias.data-cl_tensor_2.bias.detach().numpy())
"""梯度计算"""
"""定义输出误差"""
dy_numpy = np.random.random(conv_out_numpy_2.shape).astype(np.float32)
dy = torch.tensor(dy_numpy, requires_grad=True).float()
# print('dy: \n', dy_numpy)
print('dy.shape: \n', dy_numpy.shape)
## pytorch 计算卷积反向传播
conv_out_tensor_2.backward(dy)
# conv_out_tensor_1.backward(dy_grad)
# dy.backward()
# x_grad_1 = x.grad
w_grad_1 = cl_tensor_1.weight.grad
b_grad_1 = cl_tensor_1.bias.grad
w_grad_2 = cl_tensor_2.weight.grad
b_grad_2 = cl_tensor_2.bias.grad
## numpy 计算卷积反向传播
x_grad_numpy_2 = cl2.gradient(dy_numpy)
x_grad_numpy_1 = cl1.gradient(x_grad_numpy_2)
w_grad_numpy_2 = cl2.weights.grad
b_grad_numpy_2 = cl2.bias.grad
w_grad_numpy_1 = cl1.weights.grad
b_grad_numpy_1 = cl1.bias.grad
print('-----对比x_grad-----')
# print('x_grad: \n', x_grad)
# print('x_grad.shape: \n', x_grad.shape)
# print('x_grad_numpy: \n', x_grad_numpy_1)
# print('x_grad_numpy.shape: \n', x_grad_numpy_1.shape)
# print('x_grad error mean: \n', np.mean(x_grad_numpy-x_grad.detach().numpy(), axis = 3))
# print('x_grad error shape: \n', np.mean(x_grad_numpy-x_grad.detach().numpy(), axis = 3).shape)
print('-----对比w_grad-----')
# print('w_grad: \n', w_grad_1)
# print('w_grad_numpy: \n', w_grad_numpy_1)
print('w_grad_1 error: \n', w_grad_numpy_1-w_grad_1.detach().numpy())
print('w_grad_2 error: \n', w_grad_numpy_2-w_grad_2.detach().numpy())
print('-----对比b_grad-----')
# print('b_grad: \n', b_grad_1)
# print('b_grad_numpy: \n', b_grad_numpy_1)
print('b_grad_1 error: \n', b_grad_numpy_1-b_grad_1.detach().numpy())
print('b_grad_2 error: \n', b_grad_numpy_2-b_grad_2.detach().numpy())
'''
Conv梯度检测
'''
def conv_checkgrad():
"""梯度检测"""
eps = 1e-4
"""手动定义卷积核(weight)和偏置"""
w = torch.rand(5, 3, 3, 3) # 5种3通道的3乘3卷积核
b = torch.rand(5) # 和卷积核种类数保持一致(不同通道共用一个bias)
w_numpy = w.detach().numpy()
b_numpy = b.detach().numpy()
"""定义输入样本"""
x = torch.tensor(np.random.randn(1, 3, 3, 3).astype(np.float32), requires_grad=True) # 1张3通道的5乘5的图
x_numpy = x.detach().numpy()
"""卷积初始化"""
cl_tensor_1 = torch.nn.Conv2d(3, 5, kernel_size=3, stride=1, padding=0)
cl_tensor_1.weight = torch.nn.Parameter(w, requires_grad=True)
cl_tensor_1.bias = torch.nn.Parameter(b, requires_grad=True)
cl1 = Conv.ConvLayer(3, 5, 3,3, zero_padding=0, stride=1, method='VALID')
# cl2 = Conv.ConvLayer(3, 5, 3,3, zero_padding=1, stride=1, method='SAME')
# cl3 = Conv.ConvLayer(3, 5, 3,3, zero_padding=1, stride=1, method='SAME')
cl1.set_weight(Parameter(w_numpy, requires_grad=True))
cl1.set_bias(Parameter(b_numpy, requires_grad=True))
# cl2.set_weight(Parameter(w_numpy, requires_grad=True))
# cl2.set_bias(Parameter(b_numpy, requires_grad=True))
# cl3.set_weight(Parameter(w_numpy, requires_grad=True))
# cl3.set_bias(Parameter(b_numpy, requires_grad=True))
conv_out_tensor_1 = cl_tensor_1(x)
conv_out_numpy_1 = cl1.forward(x_numpy) # forward
# conv_out_numpy_2 = cl2.forward(x_numpy-eps) # forward
# conv_out_numpy_3 = cl3.forward(x_numpy+eps) # forward
print('-----对比输出-----')
print('conv_out_tensor_1: \n', conv_out_tensor_1)
# print('conv_out_tensor_1.shape: \n', conv_out_tensor_1.shape)
print('conv_out_numpy_1: \n', conv_out_numpy_1)
# print('conv_out_numpy_1.shape: \n', conv_out_numpy_1.shape)
print('conv_out_1 error: \n', conv_out_numpy_1-conv_out_tensor_1.detach().numpy())
"""梯度计算"""
"""定义输出误差"""
dy_numpy = np.ones(conv_out_numpy_1.shape).astype(np.float32)
dy = torch.tensor(dy_numpy, requires_grad=True).float()
x_grad = cl1.gradient(dy_numpy)
# x_grad_check = (conv_out_numpy_1-conv_out_numpy_2)/2/eps
# print("-------梯度检测-------")
# print('x_grad: \n',x_grad)
# print('x_grad_check: \n',x_grad_check)
# print('x_grad_check error: \n',x-x_grad_check)
'''
验证:激活层relu(成功)
'''
def relu_test():
"""定义输入样本"""
# 输入数据大小为 1x2x4x4
x = torch.tensor(np.random.randn(1,2,4,4).astype(np.float32), requires_grad=True)
x_numpy = x.detach().numpy()
"""定义误差"""
dy = torch.tensor(np.random.randn(1,2,4,4).astype(np.float32), requires_grad=True)
dy_numpy = dy.detach().numpy()
# pytorch
r_out = F.relu(x)
r_out.backward(dy)
print('r_out: \n', r_out)
# numpy
relu1 = Activators.ReLU()
r_out_numpy = relu1.forward(x_numpy)
r_eta = relu1.gradient(dy_numpy)
print('r_out_numpy: \n', r_out_numpy)
# 反向传播
print('r_out_grad: \n', x.grad)
print('r_out_grad_numpy: \n', r_eta)
'''
验证:激活层leakyrelu(成功)
'''
def leakyrelu_test():
"""定义输入样本"""
# 输入数据大小为 1x2x4x4
x = torch.tensor(np.random.randn(1,2,4,4).astype(np.float32), requires_grad=True)
x_numpy = x.detach().numpy()
"""定义误差"""
dy = torch.tensor(np.random.randn(1,2,4,4).astype(np.float32), requires_grad=True)
dy_numpy = dy.detach().numpy()
"""前向传播"""
# pytorch
lr_tensor = nn.LeakyReLU(0.2)
lr_out_tensor = lr_tensor(x)
# numpy
lr_numpy = Activators.LeakyReLU(0.2)
lr_out_numpy = lr_numpy.forward(x_numpy)
"""反向传播"""
# pytorch
lr_out_tensor.backward(dy)
x_grad = x.grad
# numpy
x_grad_numpy = lr_numpy.gradient(dy_numpy)
print('-----对比输出-----')
print('lr_out_tensor: \n', lr_out_tensor)
print('lr_out_numpy: \n', lr_out_numpy)
print('lr_out_error: \n', lr_out_numpy-lr_out_tensor.detach().numpy())
print('-----对比x_grad-----')
print('x_grad: \n', x_grad)
print('x_grad.shape: \n', x_grad.shape)
print('x_grad_numpy: \n', x_grad_numpy)
print('x_grad_numpy.shape: \n', x_grad_numpy.shape)
print('x_grad_error: \n', x_grad_numpy-x_grad.detach().numpy())
'''
验证:激活层sigmoid(成功)
'''
def sigmoid_test():
x_numpy = np.random.randn(6,1).astype(np.float32)
x = torch.tensor(x_numpy, requires_grad=True)
y_target_numpy = np.array([0,0,1,0,1,1]).astype(np.float32) # target要是浮点数
y_target = torch.tensor(y_target_numpy)
loss_tensor = nn.BCELoss()
loss_numpy = Loss.BECLoss()
"""前向传播"""
s_tensor = nn.Sigmoid()
s_out_tensor = s_tensor(x).view(-1)
s_numpy = Activators.Sigmoid_CE()
s_out_numpy = s_numpy.forward(x_numpy).reshape(-1)
print('-----对比输出-----')
print('s_out_tensor: \n', s_out_tensor)
print('s_out_tensor shape: \n', s_out_tensor.shape)
print('s_out_numpy: \n', s_out_numpy)
print('s_out_numpy shape: \n', s_out_numpy.shape)
print('s_out_error: \n', s_out_numpy-s_out_tensor.detach().numpy())
"""反向传播"""
err_tensor = loss_tensor(s_out_tensor, y_target)
err_numpy = loss_numpy.forward(s_out_numpy, y_target_numpy)
err_tensor.backward()
x_grad = x.grad
dy_loss = loss_numpy.gradient()
x_grad_numpy = s_numpy.gradient(dy_loss)
print('-----对比loss-----')
print('err_tensor: \n', err_tensor)
print('err_numpy: \n', err_numpy)
print('err_error: \n', err_numpy-err_tensor.detach().numpy())
print('-----对比x_grad-----')
print('x_grad: \n', x_grad)
print('x_grad_numpy: \n', x_grad_numpy)
print('x_grad_error: \n', x_grad_numpy-x_grad.detach().numpy())
'''
验证:激活层tanh(成功)
'''
def tanh_test():
x_numpy = np.random.randn(6,1).astype(np.float32)
x = torch.tensor(x_numpy, requires_grad=True)
"""前向传播"""
s_tensor = nn.Tanh()
s_out_tensor = s_tensor(x)
s_numpy = Activators.Tanh()
s_out_numpy = s_numpy.forward(x_numpy)
print('-----对比输出-----')
print('s_out_tensor: \n', s_out_tensor)
print('s_out_tensor shape: \n', s_out_tensor.shape)
print('s_out_numpy: \n', s_out_numpy)
print('s_out_numpy shape: \n', s_out_numpy.shape)
print('s_out_error: \n', s_out_numpy-s_out_tensor.detach().numpy())
"""反向传播"""
dy_numpy = np.random.random(s_out_numpy.shape).astype(np.float32)
dy = torch.tensor(dy_numpy, requires_grad=True)
s_out_tensor.backward(dy)
x_grad = x.grad
x_grad_numpy = s_numpy.gradient(dy_numpy)
print('-----对比x_grad-----')
print('x_grad: \n', x_grad)
print('x_grad_numpy: \n', x_grad_numpy)
print('x_grad_error: \n', x_grad_numpy-x_grad.detach().numpy())
'''
验证:批量标准化层BN(成功)
'''
def bn_test():
"""定义输入"""
x_numpy = np.random.randn(1,5,2,2).astype(np.float32)
x = torch.tensor(x_numpy, requires_grad=True)
"""定义参数"""
w_numpy = np.random.normal(1.0, 0.02, size=(5)).astype(np.float32)
w = torch.tensor(w_numpy, requires_grad=True)
b_numpy = np.zeros(5).astype(np.float32)
b = torch.tensor(b_numpy, requires_grad=True)
# 初始化
# pytorch (需要添加affine=False参数)
# affine定义了BN层的参数γ和β是否是可学习的(不可学习默认是常数1和0). 通常需要设置为True,但测试时numpy的γ=1和β=0,故此时需要将参数设置为False
# bn_tensor = torch.nn.BatchNorm2d(5, affine=False)
bn_tensor = torch.nn.BatchNorm2d(5, affine=True)
bn_tensor.weight = torch.nn.Parameter(w, requires_grad=True)
bn_tensor.bias = torch.nn.Parameter(b, requires_grad=True)
# numpy
bn_numpy = BN.BatchNorm(5)
bn_numpy.set_gamma(Parameter(w_numpy, requires_grad=True))
bn_numpy.set_beta(Parameter(b_numpy, requires_grad=True))
"""计算前向传播"""
bn_out_tensor = bn_tensor(x)
bn_out_numpy = bn_numpy.forward(x_numpy,'train')
"""计算反向传播"""
# 误差参数初始化
dy_numpy = np.random.random(bn_out_numpy.shape).astype(np.float32)
dy = torch.tensor(dy_numpy, requires_grad=True)
# 反向计算
# pytorch
bn_out_tensor.backward(dy)
x_grad_tensor = x.grad
w_grad_tensor = bn_tensor.weight.grad
b_grad_tensor = bn_tensor.bias.grad
# numpy
x_grad_numpy = bn_numpy.gradient(dy_numpy)
w_grad_numpy = bn_numpy.gamma.grad
b_grad_numpy = bn_numpy.beta.grad
"""打印输出"""
print('-----对比输出-----')
print('bn_out_tensor: \n',bn_out_tensor)
print('bn_out_tensor.shape: \n',bn_out_tensor.shape)
print('bn_out_numpy: \n',bn_out_numpy)
print('bn_out_numpy.shape: \n',bn_out_numpy.shape)
print('bn_out_error: \n', bn_out_numpy-bn_out_tensor.detach().numpy())
print('-----对比x_grad-----')
print('x_grad_tensor: \n',x_grad_tensor)
print('x_grad_numpy: \n',x_grad_numpy)
print('x_grad_error: \n', x_grad_numpy-x_grad_tensor.detach().numpy())
print('-----对比w_grad-----')
print('w_grad_tensor: \n',w_grad_tensor)
print('w_grad_numpy: \n',w_grad_numpy)
print('w_grad_error: \n', w_grad_numpy-w_grad_tensor.detach().numpy())
print('-----对比b_grad-----')
print('b_grad_tensor: \n',b_grad_tensor)
print('b_grad_numpy: \n',b_grad_numpy)
print('b_grad_error: \n', b_grad_numpy-b_grad_tensor.detach().numpy())
'''
验证:全连接层FC(成功)
'''
def fc_test():
"""定义输入样本"""
# 输入数据大小为 1x5x8x8 输出大小定为10
x_numpy = np.random.randn(2,5,8,8).astype(np.float32)
x = torch.tensor(x_numpy, requires_grad=True)
output_size = 10
# 定义全连接层参数
w_numpy = np.random.randn(5*8*8, output_size).astype(np.float32)
b_numpy = np.random.randn(output_size,).astype(np.float32)
w = torch.tensor(w_numpy.T, requires_grad=True)
b = torch.tensor(b_numpy, requires_grad=True)
# pytorch
fc_tensor = torch.nn.Linear(320, output_size, bias=True)
fc_tensor.weight = torch.nn.Parameter(w, requires_grad=True)
fc_tensor.bias = torch.nn.Parameter(b, requires_grad=True)
# numpy
fc1 = FC.FullyConnect(320, output_size)
fc1.set_weight(Parameter(w_numpy, requires_grad=True))
fc1.set_bias(Parameter(b_numpy, requires_grad=True))
"""计算正向传播"""
fc_out_tensor = fc_tensor(x.view(2,-1))
fc_out_numpy = fc1.forward(x_numpy)
"""计算反向传播"""
# 定义误差
dy_numpy = np.random.random(fc_out_numpy.shape)
dy = torch.FloatTensor(dy_numpy)
fc_out_tensor.backward(dy)
x_grad = x.grad
w_grad = fc_tensor.weight.grad
b_grad = fc_tensor.bias.grad
x_grad_numpy = fc1.gradient(dy_numpy)
w_grad_numpy = fc1.weights.grad
b_grad_numpy = fc1.bias.grad
# 打印结果
print('-----对比输出-----')
print('fc_out_tensor: \n',fc_out_tensor)
print('fc_out_tensor: \n',fc_out_tensor.shape)
print('fc_out_numpy: \n',fc_out_numpy)
print('fc_out_numpy: \n',fc_out_numpy.shape)
print('-----对比x_grad-----')
print('x_grad: \n',x_grad)
print('x_grad_shape: \n',x_grad.shape)
print('x_grad_numpy: \n',x_grad_numpy)
print('x_grad_numpy_shape: \n',x_grad_numpy.shape)
print('x_grad error: \n',x_grad_numpy-x_grad.detach().numpy())
print('-----对比w_grad-----')
print('w_grad: \n',w_grad)
print('w_grad shape: \n',w_grad.shape)
print('w_grad_numpy: \n',w_grad_numpy)
print('w_grad_numpy shape: \n',w_grad_numpy.shape)
print('w_numpy shape: \n',fc1.weights.data.shape)
print('-----对比b_grad-----')
print('b_grad: \n',b_grad)
print('b_grad_numpy: \n',b_grad_numpy)
'''
验证:池化层Pooling(成功)
'''
def pooling_test():
"""定义输入样本"""
# 输入数据大小为 1x5x8x8
x = torch.tensor(np.random.randn(1,5,8,8).astype(np.float32), requires_grad=True)
x_numpy = x.detach().numpy()
"""定义误差"""
dy = torch.tensor(np.random.randn(1,5,4,4).astype(np.float32), requires_grad=True)
dy_numpy = dy.detach().numpy()
# pytorch pool=(2,2) stride=2
pool_out = F.max_pool2d(x, kernel_size=2, stride=2)
pool_out.backward(dy)
print('pool_out: \n', pool_out)
print('pool_out.shape: \n', pool_out.shape)
# numpy
pool1 = Pool.MaxPooling(pool_shape=(2,2), stride=(2,2))
pool_out_numpy = pool1.forward(x_numpy)
pool_eta = pool1.gradient(dy_numpy)
print('pool_out_numpy: \n', pool_out_numpy)
print('pool_out_numpy.shape: \n', pool_out_numpy.shape)
# 反向传播误差对比
print('pool_out_grad: \n', x.grad)
print('pool_out_grad.shape: \n', x.grad.shape)
print('pool_out_numpy_grad: \n', pool_eta)
print('pool_out_numpy_grad.shape: \n', pool_eta.shape)
print('pool_out_numpy_grad error: \n', pool_eta-x.grad.detach().numpy())
'''
验证:反卷积层Deconv(成功)
'''
def deconv_test():
"""手动定义卷积核(weight)和偏置"""
## pytorch对于deconv的weight维度是[in_channel,out_channel,H,W]
## 通常Conv的维度是[out_channel,in_channel,H,W]
# w_numpy = np.random.randn(3,5,4,4).astype(np.float32)
w_numpy = np.random.randn(3,5,3,3).astype(np.float32)
# w_numpy = np.ones((3,5,3,3)).astype(np.float32)
b_numpy = np.random.randn(5).astype(np.float32)
w = torch.tensor(w_numpy, requires_grad=True)
b = torch.tensor(b_numpy, requires_grad=True)
w_numpy = w_numpy.transpose((1,0,2,3))
print('w_numpy.shape: ',w_numpy.shape)
"""定义输入样本"""
# x_numpy = np.random.randn(1,3,4,4).astype(np.float32)
# x_numpy = np.random.randn(1,3,2,2).astype(np.float32)
x_numpy = np.ones((2,3,2,2)).astype(np.float32)
x = torch.tensor(x_numpy, requires_grad=True)
'''前向传播'''
## torch
# decl_tensor = torch.nn.ConvTranspose2d(3, 5, kernel_size=4, stride=2, padding=1)
decl_tensor = torch.nn.ConvTranspose2d(3, 5, kernel_size=3, stride=1, padding=0)
decl_tensor.weight = torch.nn.Parameter(w, requires_grad=True)
decl_tensor.bias = torch.nn.Parameter(b, requires_grad=True)
deconv_out_tensor = decl_tensor(x)
## numpy
# decl_numpy = Deconv.Deconv(3, 5, filter_size=4, zero_padding=1, stride=2)
decl_numpy = Deconv.Deconv(3, out_channels=5, filter_size=3, zero_padding=0, stride=1)
decl_numpy.set_weight(Parameter(w_numpy, requires_grad=True))
decl_numpy.set_bias(Parameter(b_numpy, requires_grad=True))
deconv_out_numpy = decl_numpy.forward(x_numpy)
print('-----对比输出-----')
print('deconv_out_tensor: \n', deconv_out_tensor[0])
print('deconv_out_tensor.shape: \n', deconv_out_tensor.shape)
print('deconv_out_numpy: \n', deconv_out_numpy[0])
print('deconv_out_numpy.shape: \n', deconv_out_numpy.shape)
print('deconv_out_error: \n', deconv_out_numpy-deconv_out_tensor.detach().numpy())
'''反向传播'''
dy_numpy = np.random.random(deconv_out_numpy.shape).astype(np.float32)
dy = torch.tensor(dy_numpy, requires_grad=True)
## pytorch
deconv_out_tensor.backward(dy)
x_grad = x.grad
w_grad = decl_tensor.weight.grad
b_grad = decl_tensor.bias.grad
## numpy
x_grad_numpy = decl_numpy.gradient(dy_numpy)
w_grad_numpy = decl_numpy.weights.grad
b_grad_numpy = decl_numpy.bias.grad
print('-----对比x_grad-----')
print('x_grad: \n', x_grad[0])
print('x_grad.shape: \n', x_grad.shape)
print('x_grad_numpy: \n', x_grad_numpy[0])
print('x_grad_numpy.shape: \n', x_grad_numpy.shape)
print('x_grad_error: \n', x_grad_numpy-x_grad.detach().numpy())
print('-----对比w_grad-----')
print('w_grad: \n', w_grad)
print('w_grad_numpy: \n', w_grad_numpy)
print('w_grad_error: \n', w_grad_numpy.transpose((1,0,2,3))-w_grad.detach().numpy())
print('-----对比b_grad-----')
print('b_grad: \n', b_grad)
print('b_grad_numpy: \n', b_grad_numpy)
if __name__ == '__main__':
# loss_test()
# conv_test()
# conv_checkgrad()
# relu_test()
# leakyrelu_test()
# sigmoid_test()
tanh_test()
# bn_test()
# fc_test()
# pooling_test()
# deconv_test()