-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathDICOM_processing.py
executable file
·267 lines (221 loc) · 10.6 KB
/
DICOM_processing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Wed Mar 10 15:35:06 2021
@author: eveshalom
"""
import os
import pydicom
import numpy as np
from plots_and_filters import MedianFilter
def mkdir_p(mypath):
'''Creates a directory. equivalent to using mkdir -p on the command line'''
from errno import EEXIST
from os import makedirs,path
try:
makedirs(mypath)
except OSError as exc: # Python >2.5
if exc.errno == EEXIST and path.isdir(mypath):
pass
else: raise
return
def dicomdirscan(dirpath):
dicomRawList = [] # create an empty list to hold raw dcm
dicomSliceLoc = [] # create an empty list to hold slice locations
dicomAcqTime = [] # create an empty list to hold acquisition times
# walk through the directory and carry out extraction if finds .dcm type files
for dirName, subdir,files in os.walk(dirpath):
for file in files:
if ".dcm" in file.lower(): # check whether the file's DICOM
ds = pydicom.read_file(os.path.join(dirName,file)) #pydicom used to read file
dicomSliceLoc.append(float(ds.SliceLocation)) # save all slice locations
dicomAcqTime.append(float(ds.AcquisitionTime)) # save all acquisition times
dicomRawList.append(ds) # lsit of all read in dicom files
Refdcm = dicomRawList[0].copy() # save a reference dicom (use for data shape purposes)
return dicomRawList,dicomSliceLoc, dicomAcqTime,Refdcm
def Slice_Time_Readings(dicomSliceLoc, dicomAcqTime):
SliceSet = list(set(dicomSliceLoc)) # list all the distinct slice location in data set
SliceSet = sorted(SliceSet) # Slice locations sorted in asending order
Acqs = list(set(dicomAcqTime)) # list all distinct acquisition times
Acqs = sorted(Acqs) # Acquisiton times in asending order
Slices={} # Create empty dictionary
for i in range(1,len(SliceSet)+1):
Slices.update({'{}'.format(i):[]}) # Creat dictionary enteries for each slice e.g: Slice1 ... SliceN
return Slices, Acqs,SliceSet
def SpatiotempSorter(dicomRawList,Slices,SliceSet):
for snap in dicomRawList:
currentSlice=float(snap.SliceLocation) # finds slice location of current dicom
i=SliceSet.index(currentSlice) # seraches for position of current slice in sliceset
Slices['{}'.format(i+1)].append(snap) # Adds dicom to correct slice
for entries in Slices:
Slices['{}'.format(entries)].sort(key=lambda x: float(x.AcquisitionNumber)) # sorts each slice into time series
return Slices
def SignalEnhancementExtract(dicomdata,datashape,baselinepoints):
S = np.zeros(datashape) # Aloocate 4d np array of correct size
#Go through Slice dictionary sequentially to fill signal array
z=0
for entries in dicomdata: # Every slice is a dictionary entry
t=0
for snap in dicomdata['{}'.format(entries)]: # Time points are sequentially stored
S[:,:,z,t] = snap.pixel_array # output signal pixel_array into np array
t += 1
z += 1
#Take baseline average
S0=np.average(S[:,:,:,0:baselinepoints],axis=3) # Take baseline signal
E=np.zeros_like(S)
#Calcualte siganl enhancement
for i in range(0,datashape[-1]):
E[:,:,:,i]=S[:,:,:,i]-S0
E[:,:,:,i]=MedianFilter(E[:,:,:,i]) # Median filter size (3,3)
return E, S0, S
def produceDICOMktrans(encdir,ogdicom,K,visit,PatientIDNum,StudyInstanceUID):
newDicom = ogdicom.copy()
PatientID = 'RIDER Neuro MRI-{}'.format(PatientIDNum)
uidprefix = '1.3.6.1.4.1.9328.50.16.'
SeriesInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
StorageMediaFileSetUID = pydicom.uid.generate_uid(prefix=uidprefix)
FrameOfReferenceUID = pydicom.uid.generate_uid(prefix=uidprefix)
SeriesID = SeriesInstanceUID[-5:]
Seriesdir = '{}.000000-perfusion-{}'.format(ogdicom[0].SeriesNumber,SeriesID)
if visit == 1:
StudyDate = '19040321'
DateID = StudyInstanceUID[-5:]
Datedir = '21-03-1904-BRAINRESEARCH-{}'.format(DateID)
if visit == 2:
StudyDate = '19040323'
DateID = StudyInstanceUID[-5:]
Datedir = '23-03-1904-BRAINRESEARCH-{}'.format(DateID)
mkdir_p('{}/{}/{}/{}'.format(encdir,PatientID,Datedir,Seriesdir))
z=0
for snap in newDicom:
SOPInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
snap.PatientID = PatientID
snap.SOPInstanceUID = SOPInstanceUID
snap.StudyInstanceUID = StudyInstanceUID
snap.SeriesInstanceUID = SeriesInstanceUID
snap.StorageMediaFileSetUID = StorageMediaFileSetUID
snap.FrameOfReferenceUID = FrameOfReferenceUID
snap.StudyDate = StudyDate
snap.ContentDate = StudyDate
Kout = abs(K[:,:,z])*1000
Kout = Kout.astype(np.uint16)
snap.PixelData = Kout.tobytes()
fname = str(0+1).zfill(2)+'-'+str(z+1).zfill(4)
snap.save_as("{}/{}/{}/{}/{}.dcm".format(encdir,PatientID,Datedir,Seriesdir,fname), write_like_original=False)
z += 1
return
def produceDICOM(encdir,ogdicom,S,visit,PatientIDNum,StudyInstanceUID):
newDicom = ogdicom.copy()
PatientID = 'RIDER Neuro MRI-{}'.format(PatientIDNum)
uidprefix = '1.3.6.1.4.1.9328.50.16.'
SeriesInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
StorageMediaFileSetUID = pydicom.uid.generate_uid(prefix=uidprefix)
FrameOfReferenceUID = pydicom.uid.generate_uid(prefix=uidprefix)
SeriesID = SeriesInstanceUID[-5:]
Seriesdir = '{}.000000-perfusion-{}'.format(ogdicom['1'][0].SeriesNumber,SeriesID)
if visit == 1:
StudyDate = '19040321'
DateID = StudyInstanceUID[-5:]
Datedir = '21-03-1904-BRAINRESEARCH-{}'.format(DateID)
if visit == 2:
StudyDate = '19040323'
DateID = StudyInstanceUID[-5:]
Datedir = '23-03-1904-BRAINRESEARCH-{}'.format(DateID)
mkdir_p('{}/{}/{}/{}'.format(encdir,PatientID,Datedir,Seriesdir))
z=0
for entries in newDicom:
t=0
for snap in newDicom['{}'.format(entries)]:
SOPInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
snap.PatientID = PatientID
snap.SOPInstanceUID = SOPInstanceUID
snap.StudyInstanceUID = StudyInstanceUID
snap.SeriesInstanceUID = SeriesInstanceUID
snap.StorageMediaFileSetUID = StorageMediaFileSetUID
snap.FrameOfReferenceUID = FrameOfReferenceUID
snap.StudyDate = StudyDate
snap.ContentDate = StudyDate
Sout = abs(S[:,:,z,t])
Sout = Sout.astype(np.uint16)
snap.PixelData = Sout.tobytes()
fname = str(t+1).zfill(2)+'-'+str(z+1).zfill(4)
snap.save_as("{}/{}/{}/{}/{}.dcm".format(encdir,PatientID,Datedir,Seriesdir,fname), write_like_original=False)
t += 1
z += 1
return
def produce_vfa_DICOM(dro_dir,study_dir,fname,PatientIDNum,visit,S,StudyInstanceUID):
import random
from DICOM_processing import mkdir_p
import pydicom
PatientID = 'RIDER Neuro MRI-{}'.format(PatientIDNum)
uidprefix = '1.3.6.1.4.1.9328.50.16.'
SeriesInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
StorageMediaFileSetUID = pydicom.uid.generate_uid(prefix=uidprefix)
FrameOfReferenceUID = pydicom.uid.generate_uid(prefix=uidprefix)
SeriesID = SeriesInstanceUID[-5:]
Seriesdir = fname.replace(fname[-5:],SeriesID)
if visit == 1:
StudyDate = '19040321'
DateID = StudyInstanceUID[-5:]
Datedir = '21-03-1904-BRAINRESEARCH-{}'.format(DateID)
if visit == 2:
StudyDate = '19040323'
DateID = StudyInstanceUID[-5:]
Datedir = '23-03-1904-BRAINRESEARCH-{}'.format(DateID)
newpath = '{}/{}/{}/{}'.format(dro_dir,PatientID,Datedir,Seriesdir)
mkdir_p(newpath)
for dirName, subdir,files in os.walk(study_dir):
for file in files:
if ".dcm" in file.lower(): # check whether the file's DICOM
ds = pydicom.read_file(os.path.join(dirName,file)) #pydicom used to read file
SOPInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
ds.PatientID = PatientID
ds.SOPInstanceUID = SOPInstanceUID
ds.StudyInstanceUID = StudyInstanceUID
ds.SeriesInstanceUID = SeriesInstanceUID
ds.StorageMediaFileSetUID = StorageMediaFileSetUID
ds.FrameOfReferenceUID = FrameOfReferenceUID
ds.StudyDate = StudyDate
ds.ContentDate = StudyDate
z = int(ds.InstanceNumber)-1
Sout = abs(S[:,:,z])
Sout = Sout.astype(np.uint16)
ds.PixelData = Sout.tobytes()
ds.save_as("{}/{}".format(newpath,file), write_like_original=False)
return
def changeDICOM(dro_dir,study_dir,fname,PatientIDNum,visit, StudyInstanceUID):
import random
from DICOM_processing import mkdir_p
import pydicom
PatientID = 'RIDER Neuro MRI-{}'.format(PatientIDNum)
uidprefix = '1.3.6.1.4.1.9328.50.16.'
SeriesInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
StorageMediaFileSetUID = pydicom.uid.generate_uid(prefix=uidprefix)
FrameOfReferenceUID = pydicom.uid.generate_uid(prefix=uidprefix)
SeriesID = SeriesInstanceUID[-5:]
Seriesdir = fname.replace(fname[-5:],SeriesID)
if visit == 1:
StudyDate = '19040321'
DateID = StudyInstanceUID[-5:]
Datedir = '21-03-1904-BRAINRESEARCH-{}'.format(DateID)
if visit == 2:
StudyDate = '19040323'
DateID = StudyInstanceUID[-5:]
Datedir = '23-03-1904-BRAINRESEARCH-{}'.format(DateID)
newpath = '{}/{}/{}/{}'.format(dro_dir,PatientID,Datedir,Seriesdir)
mkdir_p(newpath)
for dirName, subdir,files in os.walk(study_dir):
for file in files:
if ".dcm" in file.lower(): # check whether the file's DICOM
ds = pydicom.read_file(os.path.join(dirName,file)) #pydicom used to read file
SOPInstanceUID = pydicom.uid.generate_uid(prefix=uidprefix)
ds.PatientID = PatientID
ds.SOPInstanceUID = SOPInstanceUID
ds.StudyInstanceUID = StudyInstanceUID
ds.SeriesInstanceUID = SeriesInstanceUID
ds.StorageMediaFileSetUID = StorageMediaFileSetUID
ds.FrameOfReferenceUID = FrameOfReferenceUID
ds.StudyDate = StudyDate
ds.ContentDate = StudyDate
ds.save_as("{}/{}".format(newpath,file), write_like_original=False)
return