-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathhen_frontend.py
1066 lines (905 loc) · 51.1 KB
/
hen_frontend.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
##############################################################################
# IMPORT CALLS
##############################################################################
import numpy as np
from matplotlib.backends.backend_tkagg import (FigureCanvasTkAgg, NavigationToolbar2Tk)
import unyt
from collections import namedtuple, OrderedDict
import tkinter as tk
from tkinter import ttk
from hen_design import HEN
from hen_design import generate_GUI_plot
import subprocess
import pdb
##############################################################################
# CLASSES
##############################################################################
class HEN_GUI_app():
'''
A class which holds the HEN_GUI application. Slave of root window.
'''
def __init__(self, master, deltaTmin=None, tempUnit=None):
# Defining variables
self.master = master
self.style = ttk.Style()
self.style.configure('main.TFrame')
# Determine screen dimensions
swidth = master.winfo_screenwidth()
sheight = master.winfo_screenheight()
top = master.winfo_toplevel()
# Initialize dropdown menu
self.HEN_GUI_dropdown_menu = tk.Menu(top)
top['menu'] = self.HEN_GUI_dropdown_menu
# Initialize tab systemos
self.tabControl = ttk.Notebook(self.master, width=swidth, height=sheight)
# Intialize control panel
control_panel_Tab = ttk.Frame(self.tabControl)
self.tabControl.add(control_panel_Tab, text='HEN_GUI Control Panel')
self.tabControl.pack(expand=1, fill='both')
# Initialize HEN object
self.HEN_object = HEN(delta_t=deltaTmin, temp_unit=tempUnit)
# Initialize control panel elements
self.HEN_GUI_object_explorer = HEN_GUI_object_explorer(control_panel_Tab, self.HEN_object)
self.HEN_GUI_si_frame = HEN_GUI_stream_input(control_panel_Tab, self.HEN_object, self.HEN_GUI_object_explorer)
self.HEN_GUI_ga_frame = HEN_GUI_graphical_analysis_controls(control_panel_Tab, self.tabControl, self.HEN_GUI_object_explorer, self.HEN_object)
self.HEN_GUI_uc_frame = HEN_GUI_user_constraints(control_panel_Tab)
self.HEN_GUI_os_frame = HEN_GUI_optimization_controls(control_panel_Tab, self.HEN_object, self.HEN_GUI_object_explorer, self.HEN_GUI_uc_frame)
# Intialize dropdown menu options
self.fileMenu = tk.Menu(self.HEN_GUI_dropdown_menu, tearoff=0)
self.fileMenu.add_command(label='New')
self.fileMenu.add_command(label='Save As', command=self.savefile)
self.fileMenu.add_command(label='Load', command=self.loadfile)
self.HEN_GUI_dropdown_menu.add_cascade(label='File', menu=self.fileMenu)
self.HEN_GUI_dropdown_menu.add_cascade(label='Settings')
# Placing control panel elements
control_panel_Tab.rowconfigure(4, weight=1)
control_panel_Tab.columnconfigure(9, weight=1)
self.HEN_GUI_si_frame.grid(row=0, rowspan=2, column=0, sticky='nsew')
self.HEN_GUI_ga_frame.grid(row=0, column=9, sticky='nsew')
self.HEN_GUI_os_frame.grid(row=1, rowspan=2, column=9, sticky='new')
self.HEN_GUI_object_explorer.grid(row=2, column=0, rowspan=40, columnspan=8, sticky='nsew')
self.HEN_GUI_uc_frame.grid(row=3, column=9, rowspan=3, sticky='nsew')
def savefile(self):
# Open system file explorer
filename = tk.filedialog.asksaveasfilename(initialdir='/', title='Select a File', filetypes = (("Text files",
"*.txt*"),
("all files",
"*.*")))
# Run save function
self.HEN_object.save(filename)
def loadfile(self):
# Open system file explorer
filename = tk.filedialog.askopenfilename(initialdir='/', title='Select a File', filetypes = (("Text files",
"*.txt*"),
("all files",
"*.*")))
# Run load function
self.HEN_object.load(filename)
print(filename)
# Populate object explorer
print(self.HEN_object.streams)
#for element in self.HEN_object.streams:
# print(element)
class HEN_GUI_stream_input(ttk.Frame):
'''
A class which holds the HEN_GUI stream input. Slave of HEN_GUI_app.
'''
def __init__(self, master, HEN_object, HEN_object_explorer):
# Initialize frame properties
ttk.Frame.__init__(self, master, padding='0.1i', relief='solid')
# Defining variables
self.HEN_object = HEN_object
self.HEN_object_explorer = HEN_object_explorer
self.HEN_stream_labels = ['Stream Name', 'Inlet Temperature',
'Outlet Temperature', '',
'Heat Capacity', '',
'Flow Rate', '', '', 'Heat Load', '']
self.HEN_exchanger_labels = ['Exchanger Name', 'Hot Stream', 'Cold Stream', '', 'ΔT', '', 'Reference Stream', '', '', 'Heat Load', '',
'', 'Gauge Pressure', '',
'Exchanger Type', 'Cost Parameter A', 'Cost Parameter B']
self.HEN_utility_labels = ['Utility Name', 'Utility Type', 'Temperature', '', 'Cost', '']
self.input_entries = {}
# Initialize Input Label
siLabel = ttk.Label(self, text='Stream Input', font=('Helvetica', 10, 'bold', 'underline'))
siLabel.grid(row=0, column=0, sticky='w')
eiLabel = ttk.Label(self, text='Heat Exchanger Input', font=('Helvetica', 10, 'bold', 'underline'))
eiLabel.grid(row=3, column=0, pady=(30,0), sticky='w')
uiLabel = ttk.Label(self, text='Utility Input', font=('Helvetica', 10, 'bold', 'underline'))
uiLabel.grid(row=8, column=0, pady=(30,0), sticky='w')
# Arrange stream input components
for row in range(1,3):
for col in range(11):
if row == 1 and col in [0, 1, 2, 4, 6, 9]:
l = ttk.Label(self, text=self.HEN_stream_labels[col])
l.grid(row=row, column=col, padx=10)
elif row == 1 and col in [3, 5, 7, 10]:
l = ttk.Label(self, width=12)
l.grid(row=row, column=col, padx=10)
else:
if col in [0, 1, 2, 4, 6, 9]:
e = ttk.Entry(self, width=12)
e.grid(row=row, column=col)
self.input_entries[str([row, col])] = e
elif col == 3:
m = create_dropdown_menu(self, ['°C', '°F', 'K'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 5:
m = create_dropdown_menu(self, ['J/(kg·°C)', 'BTU/(lb·°F)', 'J/(kg·K)'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 7:
m = create_dropdown_menu(self, ['kg/s', 'lb/s'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif row == 2 and col == 8:
l = ttk.Label(self, text='OR', font=('Helvetica', 10, 'bold'))
l.grid(row=row, column=col, padx=(0,10), sticky='w')
elif col == 10:
m = create_dropdown_menu(self, ['W', 'kcal/s', 'BTU/s'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
# Arrange exchanger input components
for row in range(4, 8):
for col in range(11):
if row == 4:
if col in [0, 1, 2, 4, 6, 9]:
l = ttk.Label(self, text=self.HEN_exchanger_labels[col])
l.grid(row=row, column=col, padx=10)
else:
l = ttk.Label(self, width=6)
l.grid(row=row, column=col, padx=10)
elif row == 5:
if col in [0, 1, 2, 4, 9]:
e = ttk.Entry(self, width=12)
e.grid(row=row, column=col)
self.input_entries[str([row, col])] = e
elif col == 4:
m = create_dropdown_menu(self, ['Pa', 'psi'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 6:
m = create_dropdown_menu(self, ['Hot', 'Cold'])
m[0].grid(row = row, column=col)
self.input_entries[str([row, col])] = m[1]
elif col == 8:
l = ttk.Label(self, text='OR', font=('Helvetica', 10, 'bold'))
l.grid(row=row, column=col, sticky='w')
elif col == 5:
m = create_dropdown_menu(self, ['°C', '°F', 'K'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 10:
m = create_dropdown_menu(self, ['W', 'kcal/s', 'BTU/s'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif row == 6:
if col in [0, 1, 2]:
l = ttk.Label(self, text=self.HEN_exchanger_labels[-3 + col])
l.grid(row = row, column=col, padx=10, pady=(10,0))
elif col == 4:
l = ttk.Label(self, text='Gauge Pressure')
l.grid(row = row, column =col, padx=10, pady=(10,0))
elif col == 6:
l = ttk.Label(self, text = 'U')
l.grid(row = row, column =col, padx=10, pady=(10,0))
else:
if col in [0, 1, 2, 4, 5, 6, 7]:
if col == 0:
m = create_dropdown_menu(self, ['Fixed Head', 'Floating Head', 'U Tube', 'Kettle Vaporizer'])
m[0].grid(row = row, column=col)
self.input_entries[str([row, col])] = m[1]
elif col == 1 or col == 2 or col == 4 or col == 6:
e = ttk.Entry(self, width=12)
e.grid(row=row, column=col)
self.input_entries[str([row, col])] = e
elif col == 5:
m = create_dropdown_menu(self, ['Pa', 'psi'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 7:
m = create_dropdown_menu(self, ['J/(°C·m²·s)'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
# Arrange utility input components
for row in range(10,12):
for col in range(6):
if row == 10:
l = ttk.Label(self, text=self.HEN_utility_labels[col])
l.grid(row=row, column=col, padx=10)
else:
if col in [0, 2, 4]:
e = ttk.Entry(self, width=12)
e.grid(row=row, column=col)
self.input_entries[str([row, col])] = e
elif col == 1:
m = create_dropdown_menu(self, ['Hot', 'Cold'])
m[0].grid(row = row, column=col)
self.input_entries[str([row, col])] = m[1]
elif col == 3:
m = create_dropdown_menu(self, ['°C', '°F', 'K'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
elif col == 5:
m = create_dropdown_menu(self, ['$/kW', '€/kW'])
m[0].grid(row = row, column=col, sticky='w')
self.input_entries[str([row, col])] = m[1]
# Initialize and arrange 'Add Stream' button
sub_stream = ttk.Button(self, text="Add Stream", command=self.add_stream)
sub_stream.grid(row=2, column=11, sticky='nsew')
# Initialize and arrange 'Add Exchanger' button
sub_exchanger = ttk.Button(self, text="Add Exchanger", command=self.add_exchanger)
sub_exchanger.grid(row=7, column=11, sticky='nsew')
# Initialize and arrange 'Add Utility' button
sub_utility = ttk.Button(self, text="Add Utility", command=self.add_utility)
sub_utility.grid(row=11, column=11, sticky='nsew')
def add_stream(self):
# Populating raw input data vector
raw_input = []
for col in [0, 1, 2, 3, 4, 5, 6, 7, 9, 10]:
rawdata = self.input_entries[str([2, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
if col in [0, 1, 2, 4, 6, 9]:
self.input_entries[str([2, col])].delete(0, 'end')
# HEN object input data transfer, convert all numeric values to floats
for ii in [1, 2, 4, 6, 8]:
try:
numericdata = float(raw_input[ii])
raw_input[ii] = numericdata
except TypeError:
continue
# Check if flow_rate = None, convert to 1 if so
if raw_input[6] == None:
raw_input[6] = 1
# Convert temperature unit input to unyt input
if raw_input[3] == '°C':
self.temp_unit = unyt.degC
elif raw_input[3] == '°F':
self.temp_unit = unyt.degF
else:
self.temp_unit = unyt.K
# Convert cp unit input to unyt input
if raw_input[5] == 'J/(kg·°C)':
raw_input[5] = unyt.J/(unyt.delta_degC*unyt.kg)
elif raw_input[5] == 'BTU/(lb·°F)':
raw_input[5] = unyt.BTU/(unyt.delta_degF*unyt.lb)
else:
raw_input[5] = unyt.J/(unyt.K*unyt.kg)
# Convert flow rate unit input to unyt input
if raw_input[7] == 'kg/s':
raw_input[7] = unyt.kg/unyt.s
else:
raw_input[7] = unyt.lb/unyt.s
# Convert heat load unit input to unyt input
if raw_input[9] == 'W':
raw_input[9] = unyt.W
elif raw_input[9] == 'kcal/s':
raw_input[9] = unyt.kcal/unyt.s
else:
raw_input[9] = unyt.BTU/unyt.s
# Add input to HEN object and data display
self.HEN_object.add_stream(t1 = raw_input[1], t2 = raw_input[2], cp = raw_input[4], flow_rate = raw_input[6], heat = raw_input[8], stream_name = raw_input[0], GUI_oe_tree = self.HEN_object_explorer.objectExplorer, temp_unit = self.temp_unit, cp_unit = raw_input[5], flow_unit = raw_input[7], heat_unit = raw_input[9])
def add_exchanger(self):
# Define variables
errorFlag = False
# Call get_parameters()
self.HEN_object.get_parameters()
# Populating raw input data vector
raw_input = []
for row in [5,7]:
if row == 5:
for col in [0, 1, 2, 4, 5, 6, 9, 10]:
rawdata = self.input_entries[str([5, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
elif row == 7:
for col in [0, 1, 2, 4, 5, 6, 7]:
rawdata = self.input_entries[str([7, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
# HEN object input data transfer, convert all numeric values to floats
for ii in [3, 6, 9, 10, 11, 13]:
try:
numericdata = float(raw_input[ii])
raw_input[ii] = numericdata
except TypeError:
continue
# Check if Hot Stream and Cold Stream exist
streamList = self.HEN_object.streams.keys()
if raw_input[1] not in streamList:
errorFlag = True
errorMessage = 'Hot stream ' + raw_input[1] + ' does not exist'
elif self.HEN_object.streams[raw_input[1]].stream_type != 'Hot':
errorFlag = True
errorMessage = 'Stream ' + raw_input[1] + ' is not a hot stream'
if raw_input[2] not in streamList:
errorFlag = True
errorMessage = 'Cold stream ' + raw_input[2] + 'does not exist'
elif self.HEN_object.streams[raw_input[2]].stream_type != 'Cold':
errorFlag = True
errorMessage = 'Stream ' + raw_input[2] + ' is not a cold stream'
# Convert temperature units into unyt
if raw_input[4] == '°C':
raw_input[4] = unyt.degC
elif raw_input[4] == '°F':
raw_input[4] = unyt.degF
else:
raw_input[4] = unyt.K
# Convert heat load units into unyt
if raw_input[7] == 'W':
raw_input[7] = unyt.W
elif raw_input[7] == 'kcal/s':
raw_input[7] = unyt.kcal/unyt.s
else:
raw_input[7] = unyt.BTU/unyt.s
# Convert pressure units into unyt
if raw_input[-3] == 'Pa':
raw_input[-3] = unyt.Pa
elif raw_input[-3] == 'psi':
raw_input[-3] = unyt.psi
# Convert heat transfer coefficient units into unyt
if raw_input[-1] == 'J/(°C·m²·s)':
raw_input[-1] = unyt.J/(unyt.s*unyt.m**2*unyt.delta_degC)
# Check if cost parameter A and B exist, set to 0
if raw_input[9] == None:
raw_input[9] = 0
if raw_input[10] == None:
raw_input[10] = 0
# Check if pressure exists; if not, set to 0
if raw_input[11] == None:
raw_input[11] = 0
# Convert reference stream to a number
if raw_input[5] == 'Hot':
raw_input[5] = 1
else:
raw_input[5] = 2
# Submit exchanger to back end
self.HEN_object.add_exchanger(stream1 = raw_input[1], stream2 = raw_input[2], ref_stream = raw_input[5], exchanger_delta_t = raw_input[3], exchanger_name = raw_input[0], exchanger_type = raw_input[8], cost_a = raw_input[9], cost_b = raw_input[10], pressure = raw_input[11], pressure_unit = raw_input[12], U=raw_input[13], U_unit=raw_input[14], GUI_oe_tree=self.HEN_object_explorer.objectExplorer)
# If there are no errors, clear all entries
if errorFlag == False:
for row5col in [0, 1, 2, 4, 9]:
self.input_entries[str([5, row5col])].delete(0, 'end')
for row7col in [1, 2, 4, 6]:
self.input_entries[str([7, row7col])].delete(0, 'end')
print(raw_input)
def add_utility(self):
errorFlag = False
raw_input = []
for col in range(6):
rawdata = self.input_entries[str([11, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
if raw_input[3] == '°C':
raw_input[3] = unyt.degC
elif raw_input[3] == 'K':
raw_input[3] = unyt.K
elif raw_input[3] == '°F':
raw_input[3] = unyt.degF
self.HEN_object.add_utility(utility_type = raw_input[1], temperature = float(raw_input[2]), cost = float(raw_input[4]), utility_name = raw_input[0], temp_unit = raw_input[3], GUI_oe_tree = self.HEN_object_explorer.objectExplorer)#, cost_unit = raw_input[5])
if errorFlag == False:
for row in [0, 2, 4]:
self.input_entries[str([11, row])].delete(0, 'end')
class HEN_GUI_object_explorer(ttk.Frame):
'''
A class which holds the HEN_GUI object explorer and visualizer. Slave of
HEN_GUI_app.
'''
def __init__(self, master, HEN_object):
# Initialize frame properties
ttk.Frame.__init__(self, master, padding='0.1i', relief='solid')
# Defining variables
self.HEN_object = HEN_object
# Initialize Object Explorer Label
oeLabel = ttk.Label(self, text='Object Explorer', font=('Helvetica', 10, 'bold', 'underline'))
oeLabel.grid(row=0, column=0, sticky='w')
# Initialize object visualizer label
tLabel = ttk.Label(self, text='Terminal Display', font=('Helvetica', 10, 'bold', 'underline'))
tLabel.grid(row=41, column=0, sticky='w')
# Initialize object explorer
self.objectExplorer = HEN_GUI_objE_tree(self, self.HEN_object)
# Initialize object visualizer
self.objectVisualizer = HEN_GUI_objE_display(self, self.HEN_object)
# Initialize object explorer control buttons
self.delete_stream = ttk.Button(self, text='Delete Object', command=self.objectExplorer.delete_item)
self.activate_deactivate_stream = ttk.Button(self, text='Activate/Deactivate Stream', command=self.objectExplorer.activate_deactivate_stream)
self.delete_stream.grid(row=0, column=3, padx=5)
self.activate_deactivate_stream.grid(row=0, column=2, padx=5)
# Initialize object visualizer control buttons
self.clear_display = ttk.Button(self, text='Clear Display', command=self.objectVisualizer.clearscreen)
self.clear_display.grid(row = 41, column=3, sticky='e', padx=5)
# Place object explorer and visualizer
self.columnconfigure(0, weight=1)
self.rowconfigure(1, weight=1)
self.rowconfigure(41, weight=0)
self.rowconfigure(42, weight=1)
self.objectExplorer.grid(row=1, column=0, rowspan=40, columnspan=8, padx=5, pady=(5,15), sticky='nsew')
self.objectVisualizer.grid(row=42, column=0, rowspan=1, columnspan=8, padx=5, pady=(5,5), sticky='nsew')
class HEN_GUI_objE_tree(ttk.Treeview):
'''
A class which holds the Treeview object which forms the basis of the
object explorer. Slave of HEN_GUI_object_explorer
'''
def __init__(self, master, HEN_object):
# Initialize treeview properties
ttk.Treeview.__init__(self, master, show='tree', selectmode='none')
style = ttk.Style()
style.layout("Treeview", [('Treeview.treearea', {'sticky': 'nswe'})])
self['columns'] = ('1', '2', '3', '4', '5')
self.column('1', width=170)
self.column('2', width=170)
self.column('3', width=170)
self.column('4', width=170)
self.column('5', width=170)
# Defining variables
self.HEN_object = HEN_object
self.master = master
# Intialize vertical scrollbar
self.verscrlbar = ttk.Scrollbar(self, orient='vertical', command=self.yview)
self.verscrlbar.pack(side='right', fill='y')
self.configure(yscrollcommand=self.verscrlbar.set)
# Intialize object classes in treeview
self.StreamNode = self.insert('', index=0, iid=0, text='STREAMS', values=('Inlet Temperature', 'Outlet Temperature', 'Heat Capacity Rate', 'Heat Load', 'Status'))
self.HXNode = self.insert('', index=1, iid=1, text='HEAT EXCHANGERS', values=('Hot Stream', 'Cold Stream', 'Heat Exchange', 'FoB Cost', ''))
self.UtilityNode = self.insert('', index=2, iid=2, text='UTILITIES', values=('Utility Type', 'Temperature', 'Cost', '', ''))
self.UpperSolutionNode = self.insert('', index=3, iid=3, text='ABOVE PINCH SOLUTIONS', values=('No. Exchangers', 'Cost'))
self.LowerSolutionNode = self.insert('', index=4, iid=4, text='BELOW PINCH SOLUTIONS', values=('No. Exchangers', 'Cost'))
# Initialize 'Single Click' Event (Show Selected Object in Object Explorer)
self.bind('<Button-1>', self.on_click)
self.bind("<Double-Button-1>", self.send2screen)
def on_click(self, event):
tree = event.widget
item_name = tree.identify_row(event.y)
if item_name:
tags = tree.item(item_name, 'tags')
if tags and (tags[0] == 'selectable'):
tree.selection_set(item_name)
def receive_new_stream(self, oeDataVector):
self.insert(self.StreamNode, 'end', text=oeDataVector[0], values=(f'{oeDataVector[1].value:.6f}'.rstrip('0').rstrip('.') + ' ' + str(oeDataVector[1].units), f'{oeDataVector[2].value:.6f}'.rstrip('0').rstrip('.') + ' ' + str(oeDataVector[1].units), f'{oeDataVector[3].value:.6f}'.rstrip('0').rstrip('.') + ' ' + str(oeDataVector[3].units), f'{oeDataVector[4].value:5.6f}'.rstrip('0').rstrip('.') + ' ' + str(oeDataVector[4].units), 'Active'), tags='selectable')
def receive_new_exchanger(self, oeDataVector):
self.insert(self.HXNode, 'end', text=oeDataVector[0], values=(str(oeDataVector[1]), str(oeDataVector[2]), '%.2G' % oeDataVector[3] + ' ' + str(oeDataVector[3].units), 'Active'), tags='selectable')
def receive_new_utility(self, oeDataVector):
self.insert(self.UtilityNode, 'end', text=oeDataVector[0], values=(str(oeDataVector[1]), f'{oeDataVector[2].value:.6f}'.rstrip('0').rstrip('.') + ' ' + str(oeDataVector[2].units), f'{oeDataVector[3].value:.2f}' + ' $ *' + str(oeDataVector[3].units) ), tags='selectable')
def receive_new_upper_solution(self, oeDataVector):
self.insert(self.UpperSolutionNode, 'end', text=oeDataVector[0], values=(str(oeDataVector[1]), f'{oeDataVector[2]:,.2f}'), tags='selectable')
def receive_new_lower_solution(self, oeDataVector):
self.insert(self.LowerSolutionNode, 'end', text=oeDataVector[0], values=(str(oeDataVector[1]), f'{oeDataVector[2]:,.2f}'), tags='selectable')
def delete_item(self):
HEN_selectedObject = self.selection()[0]
HEN_sO_name = self.item(HEN_selectedObject, 'text')
self.delete(HEN_selectedObject)
self.HEN_object.delete(HEN_sO_name)
def activate_deactivate_stream(self):
HEN_selectedObject = self.selection()
for stream in HEN_selectedObject:
HEN_sO_name = self.item(stream, 'text')
HEN_sO_status = self.item(stream, 'values')[-1]
if HEN_sO_status == 'Active':
self.HEN_object.deactivate_stream(HEN_sO_name)
objValues = self.item(stream, 'values')[0:-1]
self.insert(self.StreamNode, self.index(stream), text=HEN_sO_name, values=(objValues[0],objValues[1], objValues[2], objValues[3], 'Inactive'), tags='selectable')
self.delete(stream)
elif HEN_sO_status == 'Inactive':
self.HEN_object.activate_stream(HEN_sO_name)
objValues = self.item(stream, 'values')[0:-1]
self.insert(self.StreamNode, self.index(stream), text=HEN_sO_name, values=(objValues[0],objValues[1], objValues[2], objValues[3], 'Active'), tags='selectable')
self.delete(stream)
def send2screen(self, event):
self.on_click(event)
HEN_selectedObject = self.selection()
if HEN_selectedObject != ():
HEN_sO_name = self.item(HEN_selectedObject, 'text')
HEN_sO_parent_iid = self.parent(HEN_selectedObject[0])
tag2 = 0
if self.item(HEN_sO_parent_iid, 'text') == 'STREAMS':
objID = 'stream'
elif self.item(HEN_sO_parent_iid, 'text') == 'HEAT EXCHANGERS':
objID = 'hx'
elif self.item(HEN_sO_parent_iid, 'text') == 'UTILITIES':
objID = 'utility'
tag2 = self.item(HEN_selectedObject, 'values')[0]
elif self.item(HEN_sO_parent_iid, 'text') == 'ABOVE PINCH SOLUTIONS':
objID = 'upper solution'
elif self.item(HEN_sO_parent_iid, 'text') == 'BELOW PINCH SOLUTIONS':
objID = 'lower solution'
self.master.objectVisualizer.printobj2screen(HEN_sO_name, objID, tag2)
class HEN_GUI_objE_display(tk.Text):
def __init__(self, master, HEN_object):
# Initialize text properties
tk.Text.__init__(self, master, highlightthickness=0)
# Defining variables
self.HEN_object = HEN_object
# Initialize vertical scrollbar
self.verscrlbar = ttk.Scrollbar(self, orient='vertical', command=self.yview)
self.verscrlbar.pack(side='right', fill='y')
self.configure(yscrollcommand=self.verscrlbar.set)
# Initialize >>>
self.insert('end', '-'*65+ '***INITIALIZED***' + '-'*65 + '\n\n')
self.insert('end', '>>> ')
def print2screen(self, message, newcommand):
self.insert('end', message + '\n')
if newcommand == True:
self.insert('end', '>>> ')
def printobj2screen(self, object_name, tag, tag2):
if object_name not in ['STREAMS', 'HEAT EXCHANGERS', 'UTILITIES', 'ABOVE PINCH SOLUTIONS', 'BELOW PINCH SOLUTIONS']:
if tag == 'stream':
commandtext = str('displaying object ' + object_name + '...\n')
self.insert('end', commandtext)
displaytext = str(self.HEN_object.streams[object_name])
elif tag == 'hx':
commandtext = str('displaying object ' + object_name + '...\n')
self.insert('end', commandtext)
displaytext = str(self.HEN_object.exchangers[object_name])
elif tag == 'utility':
commandtext = str('displaying object ' + object_name + '...\n')
self.insert('end', commandtext)
if tag2 == 'hot':
displaytext = str(self.HEN_object.hot_utilities[object_name])
else:
displaytext = str(self.HEN_object.cold_utilities[object_name])
elif tag == 'upper solution':
commandtext = str('displaying above pinch solution ' + str(object_name) + '...\n')
self.insert('end', commandtext)
elem = self.HEN_object.results_above[int(object_name)-1]
qSol = str(elem.loc['Q'])
cSol = str(elem.loc['cost'])
displaytext = 'No. Exchangers: ' + str((elem.loc["Q"]>0).sum().sum()) + '\n' + f'Cost: ${elem.loc["cost"].sum().sum():,.2f}\n' + \
f'Solution Match Matrix (Q in {self.HEN_object.heat_unit})\n' + qSol + '\n' + 'Solution Match Matrix (Cost in $)\n' + cSol
elif tag == 'lower solution':
commandtext = str('displaying below pinch solution ' + str(object_name) + '...\n')
self.insert('end', commandtext)
elem = self.HEN_object.results_below[int(object_name)-1]
qSol = str(elem.loc['Q'])
cSol = str(elem.loc['cost'])
displaytext = 'No. Exchangers: ' + str((elem.loc["Q"]>0).sum().sum()) + '\n' + f'Cost: ${elem.loc["cost"].sum().sum():,.2f}\n' + \
f'Solution Match Matrix (Q in {self.HEN_object.heat_unit})\n' + qSol + '\n' + 'Solution Match Matrix (Cost in $)\n' + cSol
self.insert('end', displaytext + '\n\n')
self.insert('end', '>>> ')
self.see('end')
def printsolutionmatrix(self, object_name):
self.insert('end', 'Solver has converged.\n')
self.insert('end', object_name)
self.insert('end', '\n>>> ')
def clearscreen(self):
self.delete('1.0', 'end')
self.insert('end', '-'*65 + '***INITIALIZED***' + '-'*65 + '\n\n')
self.insert('end', '>>> ')
class HEN_GUI_graphical_analysis_controls(ttk.Frame):
def __init__(self, master, tabControl, object_explorer, HEN_object):
# Initialize frame properties
ttk.Frame.__init__(self, master, padding='0.1i', relief='solid')
# Define variables
self.HEN_object = HEN_object
self.master = master
self.tabControl = tabControl
# Initialize graphical analysis label
gaLabel = ttk.Label(self, text='Graphical Analysis', font=('Helvetica', 10, 'bold', 'underline'))
gaLabel.grid(row=0, column=0, sticky='nw')
# Initialize buttons
generate_cc = ttk.Button(self, text='Composite Curve', command=self.make_CC)
generate_tid = ttk.Button(self, text='TID', command=self.make_TID)
# Settings
self.showT = tk.BooleanVar()
self.showP = tk.BooleanVar()
show_temperatures = ttk.Checkbutton(self, text='Show Temperatures', variable=self.showT, offvalue=False, onvalue=True)
show_properties = ttk.Checkbutton(self, text='Show Properties', variable=self.showP, offvalue=False, onvalue=True)
# Place
generate_cc.grid(row=1, column=0, padx=(0,15), pady=(12.5,0))
generate_tid.grid(row=1, column=2, padx=(15,0), pady=(12.5,0))
show_temperatures.grid(row=1, column=3, padx=5, pady=(12.5,0))
show_properties.grid(row=1, column=4, padx=5, pady=(12.5,0))
def make_CC(self):
self.HEN_object.get_parameters()
self.HEN_object.make_cc(self.tabControl)
def make_TID(self):
self.HEN_object.get_parameters()
self.HEN_object.make_tid(self.showT.get(), self.showP.get(), self.tabControl)
class HEN_GUI_optimization_controls(ttk.Frame):
def __init__(self, master, HEN_object, HEN_object_explorer, HEN_uC_explorer):
# Intialize fram properties
ttk.Frame.__init__(self, master, padding='0.1i', relief='solid')
self.HEN_object = HEN_object
self.HEN_object_explorer = HEN_object_explorer
self.HEN_uC_explorer = HEN_uC_explorer
self.input_entries = {}
# Initialize optimization suite label
osLabel = ttk.Label(self, text='Optimization Suite', font=('Helvetica', 10, 'bold', 'underline'))
osLabel.grid(row=0, column=0, sticky='nw')
# Initialize above/below pinch radio buttons
self.pinchLoc = tk.StringVar()
abPinch = ttk.Radiobutton(self, text='Above Pinch', variable=self.pinchLoc, value='top')
blPinch = ttk.Radiobutton(self, text='Below Pinch', variable=self.pinchLoc, value='bottom')
# Initialize heat limit entries
htcLabel = ttk.Label(self, text='Heat Transfer Constraint', font=('TkDefaultFont', 9, 'italic', 'underline'))
htcType = create_dropdown_menu(self, ['Upper Limit', 'Lower Limit'])
#htcTypeL = ttk.Label(self, text='Type')
htcHotL = ttk.Label(self, text='Hot Stream')
htcColdL = ttk.Label(self, text='Cold Stream')
htcEntryL = ttk.Label(self, text='Heat Transfer Limit')
htcHot = ttk.Entry(self, width=12)
htcCold = ttk.Entry(self, width=12)
htcEntry = ttk.Entry(self, width=12)
htcUnits = create_dropdown_menu(self, ['W', 'kcal/s', 'BTU/s'])
htcButton = ttk.Button(self, text='Add Constraint', command=self.add_heat_limit)
# Initialize forbidden/required matches
frmLabel = ttk.Label(self, text='Required Match Constraint', font=('TkDefaultFont', 9, 'italic', 'underline'))
frmHotL = ttk.Label(self, text='Hot Stream')
frmColdL = ttk.Label(self, text='Cold Stream')
frmHot = ttk.Entry(self, width=12)
frmCold = ttk.Entry(self, width=12)
frmButton = ttk.Button(self, text='Add Constraint', command=self.add_spec_match)
# Initialize exchanger settings
exchLabel = ttk.Label(self, text='Heat Exchanger Settings', font=('TkDefaultFont', 9, 'italic', 'underline'))
exchType = create_dropdown_menu(self, ['Fixed Head', 'Floating Head', 'U Tube', 'Kettle Vaporizer'])
exchUL = ttk.Label(self, text='U')
exchU = ttk.Entry(self, width=12)
exchUnits = create_dropdown_menu(self, ['J/(°C·m²·s)'])
# Initialize solution depth settings
depthLabel = ttk.Label(self, text='Solution Depth Setting', font=('TkDefaultFont', 9, 'italic', 'underline'))
depthButtonMinus = ttk.Button(self, text='-', width=3, command=self.subtract_depth)
depthButtonPlus = ttk.Button(self, text='+', width=3, command=self.add_depth)
self.depthCount = tk.IntVar()
self.depthCount.set(0)
depthCounter = ttk.Label(self, textvariable=self.depthCount, background='white', width=8, anchor='center')
# Initialize 'Run HEN Optimization' button
rhoButton = ttk.Button(self, text='Run HEN Optimization', command=self.run_optimization, width = 21)
# Arrange radio button widgets
abPinch.grid(row=1, column=0, pady=(15,15))
blPinch.grid(row=1, column=2, pady=(15,15))
# Arrange heat transfer constraint widgets
htcLabel.grid(row=3, column=0)
htcHotL.grid(row=3, column=1, padx=10)
htcColdL.grid(row=3, column=2, padx=10)
htcEntryL.grid(row=3, column=3, padx=10)
htcType[0].grid(row=4, column=0, padx=10)
htcHot.grid(row=4, column=1, padx=10)
htcCold.grid(row=4, column=2, padx=10)
htcEntry.grid(row=4, column=3, padx=(10,0))
htcUnits[0].grid(row=4, column=4, sticky='w', padx=(0,10))
htcButton.grid(row=4, column=5, padx=10)
# Assign values to heat transfer constraint input
self.input_entries[str([4, 0])] = htcType[1]
self.input_entries[str([4, 1])] = htcHot
self.input_entries[str([4, 2])] = htcCold
self.input_entries[str([4, 3])] = htcEntry
self.input_entries[str([4, 4])] = htcUnits[1]
# Arrange forbidden/required matches constraint widgets
frmLabel.grid(row=6, column=0, pady=(25,0))
frmHotL.grid(row=6, column=1, padx=10, pady=(25,0))
frmColdL.grid(row=6, column=2, padx=10, pady=(25,0))
frmHot.grid(row=7, column=1, padx=10)
frmCold.grid(row=7, column=2, padx=10)
frmButton.grid(row=7, column=5, padx=10)
# Assign values to forbidden/required matches constraint input
self.input_entries[str([7, 1])] = frmHot
self.input_entries[str([7, 2])] = frmCold
# Arrange exchanger settings input
exchLabel.grid(row=8, column=0, pady=(25,0))
exchUL.grid(row=8, column=1, pady=(25,0))
exchType[0].grid(row=9, column=0)
exchU.grid(row=9, column=1)
exchUnits[0].grid(row=9, column=2, sticky='w')
# Assign values to exchanger settings input
self.input_entries[str([9, 0])] = exchType[1]
self.input_entries[str([9,1])] = exchU
self.input_entries[str([9,2])] = exchUnits[1]
# Arrange solution depth settings
self.columnconfigure(3, weight=1)
depthLabel.grid(row=8, column=3, columnspan=3, pady=(25,0))
depthButtonMinus.grid(row=9, column=3, sticky='e')
depthCounter.grid(row=9, column=4, sticky='nsew')
depthButtonPlus.grid(row=9, column=5, sticky='w')
# Assign values to solution depth input
self.input_entries[str([9,4])] = depthCounter
# Place 'Run HEN Optimization' button
self.columnconfigure(2, weight=1)
rhoButton.grid(row = 10, column = 2, pady = (25,20))
def run_optimization(self):
errorFlag = False
self.HEN_object_explorer.objectVisualizer.print2screen('Running HEN optimization method...', False)
self.HEN_object.get_parameters()
ucTree = self.HEN_uC_explorer.ucExplorer
hotProcessStreams = self.HEN_object.streams.iloc[self.HEN_object.hot_streams].keys()
coldProcessStreams = self.HEN_object.streams.iloc[~self.HEN_object.hot_streams].keys()
hotUtilities = self.HEN_object.hot_utilities.keys()
coldUtilities = self.HEN_object.cold_utilities.keys()
for constraint_type in ucTree.get_children():
for constraint in ucTree.get_children([constraint_type]):
# Extract user input data
dataVector = ucTree.item([constraint], 'values')
hot_stream = dataVector[0]
cold_stream = dataVector[1]
# Determine if hot/cold streams refer to process streams or utilities and assign indices accordingly
if hot_stream in hotProcessStreams:
hot_streamidx = self.HEN_object.streams.iloc[self.HEN_object.hot_streams].index.get_loc(hot_stream) + len(self.HEN_object.hot_utilities)
else:
hot_streamidx = self.HEN_object.hot_utilities.index.get_loc(hot_stream)
if cold_stream in coldProcessStreams:
cold_streamidx = self.HEN_object.streams.iloc[~self.HEN_object.hot_streams].index.get_loc(cold_stream) + len(self.HEN_object.cold_utilities)
else:
cold_streamidx = self.HEN_object.hot_utilities.index.get_loc(cold_stream)
# For heat transfer limit constraints (upper/lower)
if constraint_type == '0' or constraint_type == '1':
# Data sanitation for heat transfer limit units
heatlimitraw = dataVector[2].strip().split()
if heatlimitraw[1] == 'W':
heatlimit = float(heatlimitraw[0])*unyt.W
elif heatlimitraw[1] == 'kcal/s':
heatlimit = float(heatlimitraw[0])*unyt.cal/unyt.s
else:
heatlimit = float(heatlimitraw[0])*unyt.BTU/unyt.s
# Place heat limit constraint into associated matrix
if constraint_type == '0':
self.HEN_object.upper_limit[hot_streamidx, cold_streamidx] = heatlimit
elif constraint_type == '1':
self.HEN_object.lower_limit[hot_streamidx, cold_streamidx] = heatlimit
# Required constraint - place it into the matrix
elif constraint_type == '2':
self.HEN_object.required[hot_streamidx, cold_streamidx] = True
# Check to ensure upper limit matrix is nonzero; if not, set to None
if np.count_nonzero(self.HEN_object.upper_limit) == 0:
self.HEN_object.upper_limit = None
# Read heat exchanger and solution depth settings input
raw_input = []
for col in [0, 1, 2, 4]:
if col == 4:
rawdata = self.depthCount.get()
else:
rawdata = self.input_entries[str([9, col])].get()
if rawdata == '': rawdata = 100
raw_input.append(rawdata)
# Sanitize heat exchanger settings input
try:
Uvalue = float(raw_input[1])
except TypeError:
errorFlag = True
errorMessage = 'ERROR: Non-numeric heat transfer coefficient input.'
# Run solver
if errorFlag == False:
self.HEN_object.solve_HEN(pinch = str(self.pinchLoc.get()), depth=raw_input[-1], upper = self.HEN_object.upper_limit, lower = self.HEN_object.lower_limit,
required = self.HEN_object.required, U=Uvalue, U_unit=unyt.J/(unyt.s*unyt.m**2*unyt.delta_degC), exchanger_type=raw_input[0])
solNum = 1
if str(self.pinchLoc.get()) == 'top':
self.HEN_object_explorer.objectExplorer.delete(*self.HEN_object_explorer.objectExplorer.get_children(3))
for elem in self.HEN_object.results_above:
qSol = str(elem.loc['Q'])
cSol = str(elem.loc['cost'])
# Print to terminal/object visualizer
self.HEN_object_explorer.objectVisualizer.print2screen('-'*20, False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Solution {solNum}\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen('No. Exchangers: ' + str((elem.loc["Q"]>0).sum().sum()), False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Cost: ${elem.loc["cost"].sum().sum():,.2f}\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Solution Match Matrix (Q in {self.HEN_object.heat_unit})', False)
self.HEN_object_explorer.objectVisualizer.print2screen(qSol + '\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen('Solution Match Matrix (Cost in $)', False)
self.HEN_object_explorer.objectVisualizer.print2screen(cSol + '\n', False)
# Send to object explorer/object tree
self.HEN_object_explorer.objectExplorer.receive_new_upper_solution([solNum, (elem.loc["Q"]>0).sum().sum(), elem.loc["cost"].sum().sum()])
# Check if last solution
if solNum == len(self.HEN_object.results_above):
self.HEN_object_explorer.objectVisualizer.print2screen('-'*20+ '\n' + 'Solver has finished.\n', True)
solNum += 1
else:
self.HEN_object_explorer.objectExplorer.delete(*self.HEN_object_explorer.objectExplorer.get_children(4))
for elem in self.HEN_object.results_below:
qSol = str(elem.loc['Q'])
cSol = str(elem.loc['cost'])
# Print to terminal/object visualizer
self.HEN_object_explorer.objectVisualizer.print2screen('-'*20, False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Solution {solNum}\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen('No. Exchangers: ' + str((elem.loc["Q"]>0).sum().sum()), False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Cost: ${elem.loc["cost"].sum().sum():,.2f}\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen(f'Solution Match Matrix (Q in {self.HEN_object.heat_unit})', False)
self.HEN_object_explorer.objectVisualizer.print2screen(qSol + '\n', False)
self.HEN_object_explorer.objectVisualizer.print2screen('Solution Match Matrix (Cost in $)', False)
self.HEN_object_explorer.objectVisualizer.print2screen(cSol + '\n', False)
# Send to object explorer/object tree
self.HEN_object_explorer.objectExplorer.receive_new_lower_solution([solNum, (elem.loc["Q"]>0).sum().sum(), elem.loc["cost"].sum().sum()])
# Check if last solution
if solNum == len(self.HEN_object.results_below):
self.HEN_object_explorer.objectVisualizer.print2screen('-'*20+ '\n' + 'Solver has finished.\n', True)
solNum+=1
else:
self.HEN_object_explorer.objectVisualizer.print2screen(errorMessage, True)
def add_heat_limit(self):
errorFlag = False
raw_input = []
for col in range(5):
rawdata = self.input_entries[str([4, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
# Convert power units to unyt
if raw_input[4] == 'W':
raw_input[4] = unyt.W
elif raw_input[4] == 'kcal/s':
raw_input[4] = unyt.kcal/unyt.s
else:
raw_input[4] = unyt.BTU/unyt.s
dataVec = [raw_input[1], raw_input[2], float(raw_input[3])*raw_input[4]]
if raw_input[0] == 'Upper Limit':
self.HEN_uC_explorer.ucExplorer.add_ul_constraint(dataVec)
else:
self.HEN_uC_explorer.ucExplorer.add_ll_constraint(dataVec)
if errorFlag == False:
for col in [1, 2, 3]:
self.input_entries[str([4, col])].delete(0, 'end')
def add_spec_match(self):
errorFlag = False
raw_input = []
for col in [1, 2]:
rawdata = self.input_entries[str([7, col])].get()
if rawdata == '': rawdata = None
raw_input.append(rawdata)
dataVec = [raw_input[0], raw_input[1]]
self.HEN_uC_explorer.ucExplorer.add_rm_constraint(dataVec)
if errorFlag == False:
for col in [1, 2]:
self.input_entries[str([7, col])].delete(0, 'end')
def add_depth(self):
self.depthCount.set(self.depthCount.get() + 1)
def subtract_depth(self):
if self.depthCount.get() > 0:
self.depthCount.set(self.depthCount.get() - 1)
class HEN_GUI_user_constraints(ttk.Frame):
def __init__(self, master):
# Initialize frame properties
ttk.Frame.__init__(self, master, padding='0.1i', relief='solid')
# Initialize user constraints label
ucLabel = ttk.Label(self, text='User Constraints', font=('Helvetica', 10, 'bold', 'underline'))
ucLabel.grid(row=0, column=0, sticky='nw')
self.ucExplorer = HEN_GUI_uC_tree(self)
self.dcButton = ttk.Button(self, text='Delete Constraint', command=self.ucExplorer.delete_constraint)
self.columnconfigure(1, weight=1)
self.dcButton.grid(row=0, column=3)