-
Notifications
You must be signed in to change notification settings - Fork 8
/
Copy pathrun_infr_model.py
105 lines (88 loc) · 2.56 KB
/
run_infr_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
import argparse
import os
import torch
import torch.utils.tensorboard
from tqdm import tqdm
from s2s.dset import DSET_OPTS
from s2s.infr import INFR_OPTS
from s2s.model import MODEL_OPTS
from s2s.path import EXP_PATH
from s2s.tknzr import TKNZR_OPTS
from s2s.util import load_cfg, load_model_from_ckpt, set_seed
def parse_arg() -> argparse.Namespace:
parser = argparse.ArgumentParser(
prog='python run_infr_model.py',
description='Infer target sequence using sequence-to-sequence model.',
)
parser.add_argument(
'--ckpt',
help='Checkpoint to evaluate.',
required=True,
type=int,
)
parser.add_argument(
'--exp_name',
help='Current experiment name.',
required=True,
type=str,
)
parser.add_argument(
'--infr_name',
choices=INFR_OPTS.keys(),
help='Inference method.',
required=True,
type=str,
)
parser.add_argument(
'--src',
help='Source sequence.',
required=True,
type=str,
)
return parser.parse_args()
@torch.no_grad()
def main():
r"""Main function."""
# Load command line arguments.
args = parse_arg()
# Load model configuration.
model_cfg = load_cfg(exp_name=args.exp_name)
# Control random seed.
set_seed(model_cfg.seed)
# Load encoder tokenizer and its configuration.
enc_tknzr_cfg = load_cfg(exp_name=model_cfg.enc_tknzr_exp)
enc_tknzr = TKNZR_OPTS[enc_tknzr_cfg.tknzr_name].load(cfg=enc_tknzr_cfg)
# Load decoder tokenizer and its configuration.
dec_tknzr_cfg = load_cfg(exp_name=model_cfg.dec_tknzr_exp)
dec_tknzr = TKNZR_OPTS[dec_tknzr_cfg.tknzr_name].load(cfg=dec_tknzr_cfg)
# Get model running device.
device = torch.device('cpu')
if torch.cuda.is_available():
device = torch.device('cuda')
# Load model.
model = MODEL_OPTS[model_cfg.model_name](
dec_tknzr_cfg=dec_tknzr_cfg,
enc_tknzr_cfg=enc_tknzr_cfg,
model_cfg=model_cfg,
)
model = load_model_from_ckpt(
ckpt=args.ckpt,
exp_name=args.exp_name,
model=model,
)
model.eval()
model = model.to(device)
# Load inference method.
infr = INFR_OPTS[args.infr_name](**args.__dict__)
# Output inference result.
print(infr.gen(
batch_text=[args.src],
dec_max_len=model_cfg.dec_max_len,
dec_tknzr=dec_tknzr,
device=device,
enc_max_len=model_cfg.enc_max_len,
enc_tknzr=enc_tknzr,
model=model,
)[0])
if __name__ == '__main__':
main()