-
Notifications
You must be signed in to change notification settings - Fork 39
/
Copy pathreinforce.py
137 lines (114 loc) · 4.99 KB
/
reinforce.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
#!/usr/bin/env python
# -*- coding: utf-8 -*-
# Created at 2020/3/23
import pickle
import numpy as np
import tensorflow as tf
import tensorflow.keras.optimizers as optim
from Common.MemoryCollector_tf2 import MemoryCollector
from Algorithms.tf2.Models.Policy import Policy
from Algorithms.tf2.Models.Policy_discontinuous import DiscretePolicy
from Algorithms.tf2.REINFORCE.reinforce_step import reinforce_step
from Utils.env_util import get_env_info
from Utils.file_util import check_path
from Utils.tf2_util import NDOUBLE
from Utils.zfilter import ZFilter
class REINFORCE:
def __init__(self,
env_id,
render=False,
num_process=1,
min_batch_size=2048,
lr_p=3e-4,
gamma=0.99,
reinforce_epochs=5,
seed=1,
model_path=None
):
self.env_id = env_id
self.render = render
self.num_process = num_process
self.min_batch_size = min_batch_size
self.lr_p = lr_p
self.gamma = gamma
self.reinforce_epochs = reinforce_epochs
self.model_path = model_path
self.seed = seed
self._init_model()
def _init_model(self):
"""init model from parameters"""
self.env, env_continuous, num_states, num_actions = get_env_info(
self.env_id)
tf.keras.backend.set_floatx('float64')
# seeding
np.random.seed(self.seed)
tf.random.set_seed(self.seed)
self.env.seed(self.seed)
if env_continuous:
self.policy_net = Policy(num_states, num_actions) # current policy
else:
self.policy_net = DiscretePolicy(num_states, num_actions)
self.running_state = ZFilter((num_states,), clip=5)
if self.model_path:
print("Loading Saved Model {}_reinforce_tf2.p".format(self.env_id))
self.running_state = pickle.load(
open('{}/{}_reinforce_tf2.p'.format(self.model_path, self.env_id), "rb"))
self.policy_net.load_weights(
"{}/{}_reinforce_tf2".format(self.model_path, self.env_id))
self.collector = MemoryCollector(self.env, self.policy_net, render=self.render,
running_state=self.running_state,
num_process=self.num_process)
self.optimizer_p = optim.Adam(lr=self.lr_p, clipnorm=20)
def choose_action(self, state):
"""select action"""
state = np.expand_dims(NDOUBLE(state), 0)
action, log_prob = self.policy_net.get_action_log_prob(state)
action = action.numpy()[0]
return action
def eval(self, i_iter, render=False):
"""init model from parameters"""
state = self.env.reset()
test_reward = 0
while True:
if render:
self.env.render()
state = self.running_state(state)
action = self.choose_action(state)
state, reward, done, _ = self.env.step(action)
test_reward += reward
if done:
break
print(f"Iter: {i_iter}, test Reward: {test_reward}")
self.env.close()
def learn(self, writer, i_iter):
"""learn model"""
memory, log = self.collector.collect_samples(self.min_batch_size)
print(f"Iter: {i_iter}, num steps: {log['num_steps']}, total reward: {log['total_reward']: .4f}, "
f"min reward: {log['min_episode_reward']: .4f}, max reward: {log['max_episode_reward']: .4f}, "
f"average reward: {log['avg_reward']: .4f}, sample time: {log['sample_time']: .4f}")
# record reward information
with writer.as_default():
tf.summary.scalar("total reward", log['total_reward'], i_iter)
tf.summary.scalar("average reward", log['avg_reward'], i_iter)
tf.summary.scalar("min reward", log['min_episode_reward'], i_iter)
tf.summary.scalar("max reward", log['max_episode_reward'], i_iter)
tf.summary.scalar("num steps", log['num_steps'], i_iter)
batch = memory.sample() # sample all items in memory
batch_state = NDOUBLE(batch.state)
batch_action = NDOUBLE(batch.action)
batch_reward = NDOUBLE(batch.reward)
batch_mask = NDOUBLE(batch.mask)
log_stats = {}
for _ in range(self.reinforce_epochs):
log_stats = reinforce_step(self.policy_net, self.optimizer_p, batch_state, batch_action, batch_reward,
batch_mask, self.gamma)
with writer.as_default():
tf.summary.scalar("policy loss", log_stats["policy_loss"], i_iter)
return log_stats
def save(self, save_path):
"""save model"""
check_path(save_path)
pickle.dump(self.running_state,
open('{}/{}_reinforce_tf2.p'.format(save_path, self.env_id), 'wb'))
self.policy_net.save_weights(
"{}/{}_reinforce_tf2".format(save_path, self.env_id))