-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathCherry.cpp
76 lines (58 loc) · 2.04 KB
/
Cherry.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
/*
Solution by Rahul Surana
***********************************************************
You are given n integers a1,a2,…,an. Find the maximum value of max(al,al+1,…,ar)⋅min(al,al+1,…,ar) over all pairs (l,r) of integers for which 1≤l<r≤n.
Input:
The first line contains a single integer t (1≤t≤10000) — the number of test cases.
The first line of each test case contains a single integer n (2≤n≤105).
The second line of each test case contains n integers a1,a2,…,an (1≤ai≤106).
It is guaranteed that the sum of n over all test cases doesn't exceed 3⋅105.
Output:
For each test case, print a single integer — the maximum possible value of the product from the statement.
***********************************************************
*/
#include <bits/stdc++.h>
#define ll long long
#define vl vector<ll>
#define vi vector<int>
#define pi pair<int,int>
#define pl pair<ll,ll>
#define all(a) a.begin(),a.end()
#define mem(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define mp make_pair
#define F first
#define S second
#define FOR(i,a) for(int i = 0; i < a; i++)
#define trace(x) cerr<<#x<<" : "<<x<<endl;
#define trace2(x,y) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<endl;
#define trace3(x,y,z) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<" | "<<#z<<" : "<<z<<endl;
#define fast_io std::ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
using namespace std;
int inf=1e9+7,MOD=1e9+7;
ll ar[100001];
int main()
{
fast_io;
int t;
cin >> t;
while(t--){
int n;
cin >> n;
FOR(i,n) cin >> ar[i];
// sort(ar,ar+n);
if(n == 2) { cout << ar[0]*ar[1] <<"\n"; continue; }
ll max = -1;
for(int i = 1;i<n-1;i++){
ll m = ar[i];
if(ar[i-1] > ar[i+1]){
m*=ar[i-1];
}
else{
m*=ar[i+1];
}
if(m>max) max = m;
}
cout << max<<"\n";
}
}