-
Notifications
You must be signed in to change notification settings - Fork 30
/
Copy pathGCD Problem.cpp
71 lines (55 loc) · 2.19 KB
/
GCD Problem.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
/*
Solution by Rahul Surana
***********************************************************
Given a positive integer n. Find three distinct positive integers a, b, c such that a+b+c=n and gcd(a,b)=c, where gcd(x,y) denotes the greatest common divisor (GCD) of integers x and y.
Input
The input consists of multiple test cases. The first line contains a single integer t (1≤t≤105) — the number of test cases. Description of the test cases follows.
The first and only line of each test case contains a single integer n (10≤n≤109).
Output
For each test case, output three distinct positive integers a, b, c satisfying the requirements. If there are multiple solutions, you can print any. We can show that an answer always exists.
***********************************************************
*/
#include <bits/stdc++.h>
#define ll long long
#define vl vector<ll>
#define vi vector<int>
#define pi pair<int,int>
#define pl pair<ll,ll>
#define all(a) a.begin(),a.end()
#define mem(a,x) memset(a,x,sizeof(a))
#define pb push_back
#define mp make_pair
#define F first
#define S second
#define FOR(i,a) for(int i = 0; i < a; i++)
#define trace(x) cerr<<#x<<" : "<<x<<endl;
#define trace2(x,y) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<endl;
#define trace3(x,y,z) cerr<<#x<<" : "<<x<<" | "<<#y<<" : "<<y<<" | "<<#z<<" : "<<z<<endl;
#define fast_io std::ios::sync_with_stdio(false),cin.tie(NULL),cout.tie(NULL)
#define MOD 1000000007
using namespace std;
// int p[1000000007];
// void seive_of_erathros(){
// p[0] = 1;
// for(int i = 2; i < 1000000007; i++){
// for(int j = i*i; j<1000000007; j+=i){
// p[j] = 1;
// }
// }
// }
int main()
{
fast_io;
int t=1;
cin >> t;
// seive_of_erathros();
while(t--){
ll n;
cin >> n;
ll b=-1,c=-1;
if(n%2==0) { b = n-3; c = 2; }
else if(n%4==1) { b = floor(n/2)+1; c = floor(n/2)-1; }
else if(n%4==3) { b = floor(n/2)+2; c = floor(n/2)-2; }
cout << b << " " << c << " 1\n";
}
}