-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
153 lines (126 loc) · 5.24 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
#!/usr/bin/env python3
import numpy as np
import matplotlib.pyplot as plt
from py3Rsim_package.py3Rsim_package.robot_sim import *
import user
def main():
# read the user configuration for the simulation
waypoints, velocities, accelerations, tf, max_v, max_a = user.task()
# time resolution, i.e. the sampling period from point to point
dt = 0.01
# Creta the figures for the animation and graphs
fig_animation = plt.figure(figsize=(12, 10))
ax3d = fig_animation.add_subplot(111, projection='3d')
# Create the robot homed at the first waypoint
robot = robot3RSim(waypoints[0], ax3d)
# Get the robot-specific limits that define its workspace
# and create the limits vector. Intrinsic to the robot constraints.
# However the paramters are updatable!
position_limis = [robot.R_lim,
robot.z_lim]
# Plot the waypoints to the figure
for point in waypoints:
x, y, z = point
ax3d.plot([x], [y], [z], 'ro', markersize=10, alpha=0.8)
# Generate a smooth trajectory using 5-th order polynomial interpolation
trajectory, velocity, acceleration, is_valid = generate_trajectory_5th_roder(waypoints, velocities, accelerations, position_limis, max_v, max_a, tf, dt)
# in case the generated trajectory has violated constraints
# then don't start the simulation, because it will not work!
if(not is_valid):
print("[ERROR] Invalid position!")
exit(-1) # exit no need to go on!
# generate the signals
q1, q2, q3, dq1, dq2, dq3 = robot.generate_signals(trajectory, dt)
# run the simualtion of the robot
px, py, pz, vx, vy, vz = robot.run(q1, q2, q3, dq1, dq2, dq3)
# local buffers for the target data (generated from the generate_trajectory_5th_roder() function)
tx, ty, tz = [], [], []
vtx, vty, vtz = [], [], []
atx, aty, atz = [], [], []
# fill these buffers with actual data
for pos in trajectory:
tx.append(pos[0])
ty.append(pos[1])
tz.append(pos[2])
for vel in velocity:
vtx.append(vel[0])
vty.append(vel[1])
vtz.append(vel[2])
for acc in acceleration:
atx.append(acc[0])
aty.append(acc[1])
atz.append(acc[2])
# Build a time vector based on the values of the simulated joints
time_vector = np.arange(len(q1)) * dt
_, axs1 = plt.subplots(2, 2, figsize=(12, 8))
(ax11, ax12), (ax13, ax14) = axs1
# Plot 1: End Effector Trajectory
ax11.set_xlabel('Time (sec)')
ax11.set_ylabel('Position (m)')
ax11.set_title("End Effector Trajectory")
ax11.plot(time_vector, px, "r", label="X")
ax11.plot(time_vector, py, "b", label="Y")
ax11.plot(time_vector, pz, "g", label="Z")
ax11.grid(True)
ax11.legend()
# Plot 2: End Effector Linear Velocity
ax12.set_xlabel('Time (sec)')
ax12.set_ylabel('Velocity (m/s)')
ax12.set_title("End Effector Linear Velocity")
ax12.plot(time_vector, vx, "r", label="X")
ax12.plot(time_vector, vy, "b", label="Y")
ax12.plot(time_vector, vz, "g", label="Z")
ax12.grid(True)
ax12.legend()
# Plot 3: Joint Trajectories
ax13.set_xlabel('Time (sec)')
ax13.set_ylabel('Displacement (deg)')
ax13.set_title("Joint Displacement")
ax13.plot(time_vector, np.rad2deg(q1), "r", label="q1")
ax13.plot(time_vector, np.rad2deg(q2), "g", label="q2")
ax13.plot(time_vector, np.rad2deg(q3), "b", label="q3")
ax13.grid(True)
ax13.legend()
# Plot 4: Joint Velocities
ax14.set_xlabel('Time (sec)')
ax14.set_ylabel('Velocity (deg/sec)')
ax14.set_title("Joint Velocities")
ax14.plot(time_vector, np.rad2deg(dq1), "r", label="q1")
ax14.plot(time_vector, np.rad2deg(dq2), "g", label="q2")
ax14.plot(time_vector, np.rad2deg(dq3), "b", label="q3")
ax14.grid(True)
ax14.legend()
_, axs2 = plt.subplots(3, 1, figsize=(12, 8))
(ax21, ax22, ax23) = axs2
# Plot 5: Target Trajectory Profile
ax21.set_xlabel('Time (sec)')
ax21.set_ylabel('Position (m)')
ax21.set_title("Target Trajectory Profile")
ax21.plot(time_vector[0:len(tx)], tx[0:len(tx)], "r", label="X")
ax21.plot(time_vector[0:len(tx)], ty[0:len(tx)], "b", label="Y")
ax21.plot(time_vector[0:len(tx)], tz[0:len(tx)], "g", label="Z")
ax21.grid(True)
ax21.legend()
# Plot 6: Target Velocity Profile
ax22.set_xlabel('Time (sec)')
ax22.set_ylabel('Velocity (m/s)')
ax22.set_title("Target Linear Velocity Profile")
ax22.plot(time_vector[0:len(vtx)], vtx[0:len(vtx)], "r", label="X")
ax22.plot(time_vector[0:len(vtx)], vty[0:len(vtx)], "b", label="Y")
ax22.plot(time_vector[0:len(vtx)], vtz[0:len(vtx)], "g", label="Z")
ax22.grid(True)
ax22.legend()
# Plot 7: Target Acceleration Profile
ax23.set_xlabel('Time (sec)')
ax23.set_ylabel('Acceleration (m/s^2)')
ax23.set_title("Target Linear Acceleration Profile")
ax23.plot(time_vector[0:len(atx)], atx[0:len(atx)], "r", label="X")
ax23.plot(time_vector[0:len(atx)], aty[0:len(atx)], "b", label="Y")
ax23.plot(time_vector[0:len(atx)], atz[0:len(atx)], "g", label="Z")
ax23.grid(True)
ax23.legend()
plt.tight_layout()
plt.show()
print("[INFO] Simulation Complete!")
if __name__ == '__main__':
main()