-
Notifications
You must be signed in to change notification settings - Fork 37
/
Copy pathTestThreshold.py
71 lines (63 loc) · 2.79 KB
/
TestThreshold.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np
import statistics
OutputPathModels=['**********/PrimaEsecuzione/',
'***********/SecondaEsecuzione/'] #path of folder containing the files of the output of the model in the text phase
#This evaluate the average and the standard deviation of the sensitivity and FPR for
#the output of the network in the test phase. It's used to change the threshold
#and adapt it to each patient.
def main():
pat=["01","02", "05", "19","21", "23"]
nSeizure=[7,3, 5, 2, 4,5]
secondsInterictalInTest=[7500,31500, 10500, 46500, 21000,10500]
threshold=[0.6,0.8, 0.4, 0.001, 0.3,0.3]
#totSens=0
#totFPR=0
for j in range(0,len(pat)):
sensResults=[]
FPRResults=[]
for k in range(0,2):
for i in range(0, nSeizure[j]):
interPrediction=np.loadtxt(OutputPathModels[k]+"OutputTest"+"/"+"Int_"+pat[j]+"_"+str(i+1)+".csv",delimiter=',')
preictPrediction=np.loadtxt(OutputPathModels[k]+"OutputTest"+"/"+"Pre_"+pat[j]+"_"+str(i+1)+".csv",delimiter=',')
acc=0#accumulator
fp=0
tp=0
fn=0
lastTenResult=list()
for el in interPrediction:
if(el[1]>threshold[j]):
acc=acc+1
lastTenResult.append(1)
else:
lastTenResult.append(0)
if(len(lastTenResult)>10):
acc=acc-lastTenResult.pop(0)
if(acc>=8):
fp=fp+1
lastTenResult=list()
acc=0
lastTenResult=list()
for el in preictPrediction:
if(el[1]>threshold[j]):
acc=acc+1
lastTenResult.append(1)
else:
lastTenResult.append(0)
if(len(lastTenResult)>10):
acc=acc-lastTenResult.pop(0)
if(acc>=8):
tp=tp+1
else:
if(len(lastTenResult)==10):
fn=fn+1
sensitivity=tp/(tp+fn)*100
FPR=fp/(secondsInterictalInTest[j]/(60*60))
sensResults.append(sensitivity)
FPRResults.append(FPR)
sdSENS=statistics.stdev(sensResults)
avSENS=statistics.mean(sensResults)
sdFPR=statistics.stdev(FPRResults)
avFPR=statistics.mean(FPRResults)
print(pat[j]+" AVG_Sens= "+str(avSENS)+" +- "+str(sdSENS)+" AVG_FPR= "+str(avFPR)+" +- "+str(sdFPR))
if __name__ == '__main__':
main()