-
Notifications
You must be signed in to change notification settings - Fork 0
/
pipeline.py
154 lines (113 loc) · 4.53 KB
/
pipeline.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
import torch
import numpy as np
from tqdm import tqdm
from ddpm import DDPMSampler
WIDTH = 512
HEIGHT = 512
LATENTS_WIDTH = WIDTH//8
LATENTS_HEIGHT = HEIGHT//8
def generate(
prompt,
uncond_prompt=None,
input_image=None,
strength=0.8,
do_cfg=True,
cfg_scale=7.5,
sampler_name='ddpm',
n_inference_steps=50,
models={},
seed=None,
device=None,
idle_device=None,
tokenizer=None,
):
with torch.no_grad():
if not 0 < strength <=1:
raise ValueError("strength must be between 0 and 1")
if idle_device:
to_idle = lambda x: x.to(idle_device)
else:
to_idle = lambda x: x
generator = torch.Generator(device=device)
if seed is None:
generator.seed()
else:
generator.manual_seed(seed)
clip = models["clip"]
clip.to(device)
if do_cfg:
cond_tokens = tokenizer.batch_encode_plus(
[prompt],padding="max_length", max_length=77
).input_ids
cond_tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
cond_context = clip(cond_tokens)
uncond_tokens = tokenizer.batch_encode_plus(
[uncond_prompt],padding="max_length", max_length=77
).input_ids
uncond_tokens = torch.tensor(uncond_tokens, dtype=torch.long, device=device)
uncond_context = clip(uncond_tokens)
context = torch.cat([cond_context,uncond_context])
else:
tokens = tokenizer.batch_encode_plus(
[prompt],padding="max_length", max_length=77
).input_ids
tokens = torch.tensor(cond_tokens, dtype=torch.long, device=device)
context = clip(tokens)
to_idle(clip)
if sampler_name == "ddpm":
sampler = DDPMSampler(generator)
sampler.set_inference_timesteps(n_inference_steps)
else:
raise ValueError("Unkown sampler value %s. ")
latents_shape = (1,4,LATENTS_HEIGHT,LATENTS_WIDTH)
if input_image:
encoder = models["encoder"]
encoder.to(device)
input_image_tensor = input_image.resize((WIDTH,HEIGHT))
input_image_tensor = np.array(input_image_tensor)
input_image_tensor = torch.tensor(input_image_tensor,dtype=torch.float32,device=device)
input_image_tensor = rescale(input_image_tensor,(0,255),(-1,1))
input_image_tensor = input_image_tensor.unsqueeze(0)
input_image_tensor = input_image_tensor.permute(0,3,1,2)
encoder_noise = torch.randn(latents_shape,generator=generator,device=device)
latents = encoder(input_image_tensor,encoder_noise)
sampler.set_strength(strength=strength)
latents = sampler.add_noise(latents,sampler.timesteps[0])
to_idle(encoder)
else:
latents = torch.randn(latents_shape,generator=generator,device=device)
diffusion = models["diffusion"]
diffusion.to(device)
timesteps = tqdm(sampler.timesteps)
for i,timestep in enumerate(timesteps):
time_embedding = get_time_embedding(timestep).to(device)
model_input = latents
if do_cfg:
model_input = model_input.repeat(2,1,1,1)
model_output = diffusion(model_input,context,time_embedding)
if do_cfg:
output_cond, output_uncond = model_output.chunk(2)
model_output = cfg_scale * (output_cond-output_uncond)+output_uncond
latents = sampler.step(timestep,latents,model_output)
to_idle(diffusion)
decoder = models["decoder"]
decoder.to(device)
images = decoder(latents)
to_idle(decoder)
images = rescale(images,(-1,1),(0,255),clamp=True)
images=images.permute(0,2,3,1)
images = images.to("cpu",torch.uint8).numpy()
return images[0]
def rescale(x,old_range, new_range, clamp=False):
old_min, old_max = old_range
new_min, new_max = new_range
x-=old_min
x*=(new_max-new_min)/(old_max-old_min)
x+=new_min
if clamp:
x = x.clamp(new_min,new_max)
return x
def get_time_embedding(timestep):
freqs = torch.pow(10000,-torch.arange(start=0,end=160,dtype=torch.float32)/160)
x = torch.tensor([timestep],dtype=torch.float32)[:,None]*freqs[None]
return torch.cat([torch.cos(x),torch.sin(x)],dim=-1)