Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

MNIST Example Throws Exception at Optimization.solve (in v4.0) #954

Open
jholland1 opened this issue Oct 19, 2024 · 3 comments
Open

MNIST Example Throws Exception at Optimization.solve (in v4.0) #954

jholland1 opened this issue Oct 19, 2024 · 3 comments
Labels
bug Something isn't working

Comments

@jholland1
Copy link

Describe the bug 🐞

MNIST example throws exception at solve.
https://docs.sciml.ai/DiffEqFlux/stable/examples/mnist_neural_ode/

Expected behavior

A clear and concise description of what you expected to happen.

Minimal Reproducible Example 👇

Without MRE, we would only be able to help you to a limited extent, and attention to the issue would be limited. to know more about MRE refer to wikipedia and stackoverflow.

https://docs.sciml.ai/DiffEqFlux/stable/examples/mnist_neural_ode/

Error & Stacktrace ⚠️

1-element ExceptionStack:
LoadError: Optimization algorithm not found. Either the chosen algorithm is not a valid solver
choice for the `OptimizationProblem`, or the Optimization solver library is not loaded.
Make sure that you have loaded an appropriate Optimization.jl solver library, for example,
`solve(prob,Optim.BFGS())` requires `using OptimizationOptimJL` and
`solve(prob,Adam())` requires `using OptimizationOptimisers`.

For more information, see the Optimization.jl documentation: https://docs.sciml.ai/Optimization/stable/.

Chosen Optimizer: Adam(0.05, (0.9, 0.999), 1.0e-8)
Stacktrace:
 [1] __init(prob::OptimizationProblem{true, OptimizationFunction{true, AutoZygote, var"#3#4", Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, ComponentVector{Float32, CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{Axis{(down = ViewAxis(1:15700, Axis(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)))), nn_ode = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), convert = 16241:16240, fc = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, @Kwargs{}}, alg::Adam, args::Base.Iterators.Zip{Tuple{BatchView{CuArray{Float32, 4, CUDA.DeviceMemory}, CuArray{Float32, 4, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}, BatchView{CuArray{Int64, 2, CUDA.DeviceMemory}, CuArray{Int64, 2, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}}}; kwargs::@Kwargs{callback::typeof(callback)})
   @ SciMLBase 
 [2] init(prob::OptimizationProblem{true, OptimizationFunction{true, AutoZygote, var"#3#4", Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, ComponentVector{Float32, CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{Axis{(down = ViewAxis(1:15700, Axis(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)))), nn_ode = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), convert = 16241:16240, fc = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, @Kwargs{}}, alg::Adam, args::Base.Iterators.Zip{Tuple{BatchView{CuArray{Float32, 4, CUDA.DeviceMemory}, CuArray{Float32, 4, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}, BatchView{CuArray{Int64, 2, CUDA.DeviceMemory}, CuArray{Int64, 2, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}}}; kwargs::@Kwargs{callback::typeof(callback)})
   @ SciMLBase 
 [3] solve(prob::OptimizationProblem{true, OptimizationFunction{true, AutoZygote, var"#3#4", Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, typeof(SciMLBase.DEFAULT_OBSERVED_NO_TIME), Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing}, ComponentVector{Float32, CuArray{Float32, 1, CUDA.DeviceMemory}, Tuple{Axis{(down = ViewAxis(1:15700, Axis(layer_1 = 1:0, layer_2 = ViewAxis(1:15700, Axis(weight = ViewAxis(1:15680, ShapedAxis((20, 784))), bias = 15681:15700)))), nn_ode = ViewAxis(15701:16240, Axis(layer_1 = ViewAxis(1:210, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)), layer_2 = ViewAxis(211:320, Axis(weight = ViewAxis(1:100, ShapedAxis((10, 10))), bias = 101:110)), layer_3 = ViewAxis(321:540, Axis(weight = ViewAxis(1:200, ShapedAxis((20, 10))), bias = 201:220)))), convert = 16241:16240, fc = ViewAxis(16241:16450, Axis(weight = ViewAxis(1:200, ShapedAxis((10, 20))), bias = 201:210)))}}}, SciMLBase.NullParameters, Nothing, Nothing, Nothing, Nothing, Nothing, Nothing, @Kwargs{}}, alg::Adam, args::Base.Iterators.Zip{Tuple{BatchView{CuArray{Float32, 4, CUDA.DeviceMemory}, CuArray{Float32, 4, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}, BatchView{CuArray{Int64, 2, CUDA.DeviceMemory}, CuArray{Int64, 2, CUDA.DeviceMemory}, LearnBase.ObsDim.Last}}}; kwargs::@Kwargs{callback::typeof(callback)})
   @ SciMLBase 

Environment (please complete the following information):

  • Output of using Pkg; Pkg.status()
julia> Pkg.status()
Status `\.julia\environments\v1.11\Project.toml`
  [052768ef] CUDA v5.5.2
  [b0b7db55] ComponentArrays v0.15.17
  [aae7a2af] DiffEqFlux v4.0.0
  [b2108857] Lux v1.1.0
  [d0bbae9a] LuxCUDA v0.3.3
  [cc2ba9b6] MLDataUtils v0.5.4
  [eb30cadb] MLDatasets v0.7.18
  [872c559c] NNlib v0.9.24
  [7f7a1694] Optimization v4.0.3
  [42dfb2eb] OptimizationOptimisers v0.3.3
  [1dea7af3] OrdinaryDiffEq v6.89.0
  [10745b16] Statistics v1.11.1
  [e88e6eb3] Zygote v0.6.72
  [9a3f8284] Random v1.11.0
  [8dfed614] Test v1.11.0
  • Output of using Pkg; Pkg.status(; mode = PKGMODE_MANIFEST)
Status '\.julia\environments\v1.11\Manifest.toml`
  [47edcb42] ADTypes v1.9.0
  [621f4979] AbstractFFTs v1.5.0
  [1520ce14] AbstractTrees v0.4.5
  [7d9f7c33] Accessors v0.1.38
  [79e6a3ab] Adapt v4.0.4
  [66dad0bd] AliasTables v1.1.3
  [dce04be8] ArgCheck v2.3.0
  [ec485272] ArnoldiMethod v0.4.0
  [4fba245c] ArrayInterface v7.16.0
  [4c555306] ArrayLayouts v1.10.3
  [a9b6321e] Atomix v0.1.0
⌅ [a963bdd2] AtomsBase v0.3.5
  [ab4f0b2a] BFloat16s v0.5.0
  [198e06fe] BangBang v0.4.3
  [9718e550] Baselet v0.1.1
  [d1d4a3ce] BitFlags v0.1.9
  [62783981] BitTwiddlingConvenienceFunctions v0.1.6
  [4544d5e4] Boltz v1.0.1
  [e1450e63] BufferedStreams v1.2.2
  [fa961155] CEnum v0.5.0
  [2a0fbf3d] CPUSummary v0.2.6
  [336ed68f] CSV v0.10.14
  [052768ef] CUDA v5.5.2
  [1af6417a] CUDA_Runtime_Discovery v0.3.5
  [7057c7e9] Cassette v0.3.13
  [082447d4] ChainRules v1.71.0
  [d360d2e6] ChainRulesCore v1.25.0
  [46823bd8] Chemfiles v0.10.41
  [fb6a15b2] CloseOpenIntervals v0.1.13
  [944b1d66] CodecZlib v0.7.6
  [35d6a980] ColorSchemes v3.26.0
  [3da002f7] ColorTypes v0.11.5
  [c3611d14] ColorVectorSpace v0.10.0
  [5ae59095] Colors v0.12.11
  [38540f10] CommonSolve v0.2.4
  [bbf7d656] CommonSubexpressions v0.3.1
  [f70d9fcc] CommonWorldInvalidations v1.0.0
  [34da2185] Compat v4.16.0
  [b0b7db55] ComponentArrays v0.15.17
  [a33af91c] CompositionsBase v0.1.2
  [2569d6c7] ConcreteStructs v0.2.3
  [f0e56b4a] ConcurrentUtilities v2.4.2
  [88cd18e8] ConsoleProgressMonitor v0.1.2
  [187b0558] ConstructionBase v1.5.8
  [6add18c4] ContextVariablesX v0.1.3
  [adafc99b] CpuId v0.3.1
  [a8cc5b0e] Crayons v4.1.1
  [9a962f9c] DataAPI v1.16.0
  [124859b0] DataDeps v0.7.13
  [a93c6f00] DataFrames v1.7.0
  [864edb3b] DataStructures v0.18.20
  [e2d170a0] DataValueInterfaces v1.0.0
  [244e2a9f] DefineSingletons v0.1.2
  [8bb1440f] DelimitedFiles v1.9.1
  [2b5f629d] DiffEqBase v6.158.1
  [459566f4] DiffEqCallbacks v4.0.0
  [aae7a2af] DiffEqFlux v4.0.0
  [77a26b50] DiffEqNoiseProcess v5.23.0
  [163ba53b] DiffResults v1.1.0
  [b552c78f] DiffRules v1.15.1
  [a0c0ee7d] DifferentiationInterface v0.6.16
  [8d63f2c5] DispatchDoctor v0.4.16
  [31c24e10] Distributions v0.25.112
  [ffbed154] DocStringExtensions v0.9.3
  [4e289a0a] EnumX v1.0.4
  [7da242da] Enzyme v0.13.11
  [f151be2c] EnzymeCore v0.8.4
  [460bff9d] ExceptionUnwrapping v0.1.10
  [d4d017d3] ExponentialUtilities v1.26.1
  [e2ba6199] ExprTools v0.1.10
⌅ [6b7a57c9] Expronicon v0.8.5
  [cc61a311] FLoops v0.2.2
  [b9860ae5] FLoopsBase v0.1.1
  [7034ab61] FastBroadcast v0.3.5
  [9aa1b823] FastClosures v0.3.2
  [29a986be] FastLapackInterface v2.0.4
  [5789e2e9] FileIO v1.16.4
  [48062228] FilePathsBase v0.9.22
  [1a297f60] FillArrays v1.13.0
  [6a86dc24] FiniteDiff v2.26.0
  [53c48c17] FixedPointNumbers v0.8.5
  [f6369f11] ForwardDiff v0.10.36
  [f62d2435] FunctionProperties v0.1.2
  [069b7b12] FunctionWrappers v1.1.3
  [77dc65aa] FunctionWrappersWrappers v0.1.3
  [d9f16b24] Functors v0.4.12
⌅ [0c68f7d7] GPUArrays v10.3.1
⌅ [46192b85] GPUArraysCore v0.1.6
⌅ [61eb1bfa] GPUCompiler v0.27.8
  [92fee26a] GZip v0.6.2
  [c145ed77] GenericSchur v0.5.4
  [c27321d9] Glob v1.3.1
  [86223c79] Graphs v1.12.0
  [f67ccb44] HDF5 v0.17.2
  [cd3eb016] HTTP v1.10.8
  [3e5b6fbb] HostCPUFeatures v0.1.17
  [0e44f5e4] Hwloc v3.3.0
  [34004b35] HypergeometricFunctions v0.3.24
  [7869d1d1] IRTools v0.4.14
  [615f187c] IfElse v0.1.1
  [c817782e] ImageBase v0.1.7
  [a09fc81d] ImageCore v0.10.2
  [4e3cecfd] ImageShow v0.3.8
  [d25df0c9] Inflate v0.1.5
  [22cec73e] InitialValues v0.3.1
  [842dd82b] InlineStrings v1.4.2
  [7d512f48] InternedStrings v0.7.0
  [3587e190] InverseFunctions v0.1.17
  [41ab1584] InvertedIndices v1.3.0
  [92d709cd] IrrationalConstants v0.2.2
  [82899510] IteratorInterfaceExtensions v1.0.0
  [033835bb] JLD2 v0.5.6
  [692b3bcd] JLLWrappers v1.6.1
  [0f8b85d8] JSON3 v1.14.1
  [b14d175d] JuliaVariables v0.2.4
  [ef3ab10e] KLU v0.6.0
  [63c18a36] KernelAbstractions v0.9.28
  [ba0b0d4f] Krylov v0.9.7
  [5be7bae1] LBFGSB v0.4.1
  [929cbde3] LLVM v9.1.2
  [8b046642] LLVMLoopInfo v1.0.0
  [b964fa9f] LaTeXStrings v1.4.0
  [10f19ff3] LayoutPointers v0.1.17
  [5078a376] LazyArrays v2.2.1
  [8cdb02fc] LazyModules v0.3.1
⌅ [7f8f8fb0] LearnBase v0.3.0
  [1d6d02ad] LeftChildRightSiblingTrees v0.2.0
  [87fe0de2] LineSearch v0.1.3
  [d3d80556] LineSearches v7.3.0
  [7ed4a6bd] LinearSolve v2.36.0
  [2ab3a3ac] LogExpFunctions v0.3.28
  [e6f89c97] LoggingExtras v1.0.3
  [bdcacae8] LoopVectorization v0.12.171
  [30fc2ffe] LossFunctions v0.11.2
  [b2108857] Lux v1.1.0
  [d0bbae9a] LuxCUDA v0.3.3
  [bb33d45b] LuxCore v1.0.1
  [82251201] LuxLib v1.3.4
  [23992714] MAT v0.10.7
  [7e8f7934] MLDataDevices v1.3.0
⌃ [9920b226] MLDataPattern v0.5.4
  [cc2ba9b6] MLDataUtils v0.5.4
  [eb30cadb] MLDatasets v0.7.18
  [66a33bbf] MLLabelUtils v0.5.7
  [d8e11817] MLStyle v0.4.17
  [f1d291b0] MLUtils v0.4.4
  [3da0fdf6] MPIPreferences v0.1.11
  [1914dd2f] MacroTools v0.5.13
  [d125e4d3] ManualMemory v0.1.8
  [dbb5928d] MappedArrays v0.4.2
  [bb5d69b7] MaybeInplace v0.1.4
  [739be429] MbedTLS v1.1.9
  [128add7d] MicroCollections v0.2.0
  [e1d29d7a] Missings v1.2.0
  [e94cdb99] MosaicViews v0.3.4
  [46d2c3a1] MuladdMacro v0.2.4
  [d41bc354] NLSolversBase v7.8.3
  [872c559c] NNlib v0.9.24
  [15e1cf62] NPZ v0.4.3
  [5da4648a] NVTX v0.3.4
  [77ba4419] NaNMath v1.0.2
  [71a1bf82] NameResolution v0.1.5
  [8913a72c] NonlinearSolve v3.15.1
  [d8793406] ObjectFile v0.4.2
  [6fe1bfb0] OffsetArrays v1.14.1
  [4d8831e6] OpenSSL v1.4.3
  [429524aa] Optim v1.9.4
  [3bd65402] Optimisers v0.3.3
  [7f7a1694] Optimization v4.0.3
  [bca83a33] OptimizationBase v2.3.0
  [42dfb2eb] OptimizationOptimisers v0.3.3
  [bac558e1] OrderedCollections v1.6.3
  [1dea7af3] OrdinaryDiffEq v6.89.0
  [89bda076] OrdinaryDiffEqAdamsBashforthMoulton v1.1.0
  [6ad6398a] OrdinaryDiffEqBDF v1.1.2
  [bbf590c4] OrdinaryDiffEqCore v1.7.1
  [50262376] OrdinaryDiffEqDefault v1.1.0
  [4302a76b] OrdinaryDiffEqDifferentiation v1.1.0
  [9286f039] OrdinaryDiffEqExplicitRK v1.1.0
  [e0540318] OrdinaryDiffEqExponentialRK v1.1.0
  [becaefa8] OrdinaryDiffEqExtrapolation v1.1.0
  [5960d6e9] OrdinaryDiffEqFIRK v1.1.1
  [101fe9f7] OrdinaryDiffEqFeagin v1.1.0
  [d3585ca7] OrdinaryDiffEqFunctionMap v1.1.1
  [d28bc4f8] OrdinaryDiffEqHighOrderRK v1.1.0
  [9f002381] OrdinaryDiffEqIMEXMultistep v1.1.0
  [521117fe] OrdinaryDiffEqLinear v1.1.0
  [1344f307] OrdinaryDiffEqLowOrderRK v1.2.0
  [b0944070] OrdinaryDiffEqLowStorageRK v1.2.1
  [127b3ac7] OrdinaryDiffEqNonlinearSolve v1.2.1
  [c9986a66] OrdinaryDiffEqNordsieck v1.1.0
  [5dd0a6cf] OrdinaryDiffEqPDIRK v1.1.0
  [5b33eab2] OrdinaryDiffEqPRK v1.1.0
  [04162be5] OrdinaryDiffEqQPRK v1.1.0
  [af6ede74] OrdinaryDiffEqRKN v1.1.0
  [43230ef6] OrdinaryDiffEqRosenbrock v1.2.0
  [2d112036] OrdinaryDiffEqSDIRK v1.1.0
  [669c94d9] OrdinaryDiffEqSSPRK v1.2.0
  [e3e12d00] OrdinaryDiffEqStabilizedIRK v1.1.0
  [358294b1] OrdinaryDiffEqStabilizedRK v1.1.0
  [fa646aed] OrdinaryDiffEqSymplecticRK v1.1.0
  [b1df2697] OrdinaryDiffEqTsit5 v1.1.0
  [79d7bb75] OrdinaryDiffEqVerner v1.1.1
  [90014a1f] PDMats v0.11.31
  [65ce6f38] PackageExtensionCompat v1.0.2
  [5432bcbf] PaddedViews v0.5.12
  [d96e819e] Parameters v0.12.3
  [69de0a69] Parsers v2.8.1
  [7b2266bf] PeriodicTable v1.2.1
  [fbb45041] Pickle v0.3.5
  [e409e4f3] PoissonRandom v0.4.4
  [f517fe37] Polyester v0.7.16
  [1d0040c9] PolyesterWeave v0.2.2
  [2dfb63ee] PooledArrays v1.4.3
  [85a6dd25] PositiveFactorizations v0.2.4
  [d236fae5] PreallocationTools v0.4.24
  [aea7be01] PrecompileTools v1.2.1
  [21216c6a] Preferences v1.4.3
  [8162dcfd] PrettyPrint v0.2.0
  [08abe8d2] PrettyTables v2.4.0
  [33c8b6b6] ProgressLogging v0.1.4
  [92933f4c] ProgressMeter v1.10.2
  [43287f4e] PtrArrays v1.2.1
  [1fd47b50] QuadGK v2.11.1
  [74087812] Random123 v1.7.0
  [e6cf234a] RandomNumbers v1.6.0
  [c1ae055f] RealDot v0.1.0
  [3cdcf5f2] RecipesBase v1.3.4
  [731186ca] RecursiveArrayTools v3.27.0
  [f2c3362d] RecursiveFactorization v0.2.23
  [189a3867] Reexport v1.2.2
  [ae029012] Requires v1.3.0
  [ae5879a3] ResettableStacks v1.1.1
  [37e2e3b7] ReverseDiff v1.15.3
  [79098fc4] Rmath v0.8.0
  [7e49a35a] RuntimeGeneratedFunctions v0.5.13
  [94e857df] SIMDTypes v0.1.0
  [476501e8] SLEEFPirates v0.6.43
  [0bca4576] SciMLBase v2.56.3
  [19f34311] SciMLJacobianOperators v0.1.0
  [c0aeaf25] SciMLOperators v0.3.11
  [1ed8b502] SciMLSensitivity v7.69.0
  [53ae85a6] SciMLStructures v1.5.0
  [6c6a2e73] Scratch v1.2.1
  [91c51154] SentinelArrays v1.4.5
  [efcf1570] Setfield v1.1.1
  [605ecd9f] ShowCases v0.1.0
  [777ac1f9] SimpleBufferStream v1.2.0
  [727e6d20] SimpleNonlinearSolve v1.12.3
  [699a6c99] SimpleTraits v0.9.4
  [ce78b400] SimpleUnPack v1.1.0
  [a2af1166] SortingAlgorithms v1.2.1
  [9f842d2f] SparseConnectivityTracer v0.6.7
  [47a9eef4] SparseDiffTools v2.23.0
  [dc90abb0] SparseInverseSubset v0.1.2
  [0a514795] SparseMatrixColorings v0.4.7
  [e56a9233] Sparspak v0.3.9
  [276daf66] SpecialFunctions v2.4.0
  [171d559e] SplittablesBase v0.1.15
  [cae243ae] StackViews v0.1.1
  [aedffcd0] Static v1.1.1
  [0d7ed370] StaticArrayInterface v1.8.0
  [90137ffa] StaticArrays v1.9.7
  [1e83bf80] StaticArraysCore v1.4.3
  [10745b16] Statistics v1.11.1
  [82ae8749] StatsAPI v1.7.0
⌅ [2913bbd2] StatsBase v0.33.21
  [4c63d2b9] StatsFuns v1.3.2
  [7792a7ef] StrideArraysCore v0.5.7
⌅ [4db3bf67] StridedViews v0.2.2
  [69024149] StringEncodings v0.3.7
  [892a3eda] StringManipulation v0.4.0
  [09ab397b] StructArrays v0.6.18
  [53d494c1] StructIO v0.3.1
  [856f2bd8] StructTypes v1.11.0
  [2efcf032] SymbolicIndexingInterface v0.3.33
  [3783bdb8] TableTraits v1.0.1
  [bd369af6] Tables v1.12.0
  [62fd8b95] TensorCore v0.1.1
  [5d786b92] TerminalLoggers v0.1.7
  [8290d209] ThreadingUtilities v0.5.2
  [a759f4b9] TimerOutputs v0.5.25
  [9f7883ad] Tracker v0.2.35
  [3bb67fe8] TranscodingStreams v0.11.3
  [28d57a85] Transducers v0.4.84
  [d5829a12] TriangularSolve v0.2.1
  [781d530d] TruncatedStacktraces v1.4.0
  [5c2747f8] URIs v1.5.1
  [3a884ed6] UnPack v1.0.2
  [1986cc42] Unitful v1.21.0
  [a7773ee8] UnitfulAtomic v1.0.0
  [013be700] UnsafeAtomics v0.2.1
  [d80eeb9a] UnsafeAtomicsLLVM v0.2.1
  [3d5dd08c] VectorizationBase v0.21.70
  [19fa3120] VertexSafeGraphs v0.2.0
  [ea10d353] WeakRefStrings v1.4.2
  [d49dbf32] WeightInitializers v1.0.4
  [76eceee3] WorkerUtilities v1.6.1
  [a5390f91] ZipFile v0.10.1
  [e88e6eb3] Zygote v0.6.72
  [700de1a5] ZygoteRules v0.2.5
  [02a925ec] cuDNN v1.4.0
  [4ee394cb] CUDA_Driver_jll v0.10.3+0
  [76a88914] CUDA_Runtime_jll v0.15.3+0
  [62b44479] CUDNN_jll v9.4.0+0
  [78a364fa] Chemfiles_jll v0.10.4+0
⌅ [7cc45869] Enzyme_jll v0.0.154+0
  [0234f1f7] HDF5_jll v1.14.3+3
  [e33a78d0] Hwloc_jll v2.11.2+0
  [1d5cc7b8] IntelOpenMP_jll v2024.2.1+0
  [9c1d0b0a] JuliaNVTXCallbacks_jll v0.2.1+0
  [dad2f222] LLVMExtra_jll v0.0.34+0
  [81d17ec3] L_BFGS_B_jll v3.0.1+0
  [94ce4f54] Libiconv_jll v1.17.0+0
  [856f044c] MKL_jll v2024.2.0+0
  [7cb0a576] MPICH_jll v4.2.3+0
  [f1f71cc9] MPItrampoline_jll v5.5.1+0
  [9237b28f] MicrosoftMPI_jll v10.1.4+2
  [e98f9f5b] NVTX_jll v3.1.0+2
⌅ [fe0851c0] OpenMPI_jll v4.1.6+0
  [458c3c95] OpenSSL_jll v3.0.15+1
  [efe28fd5] OpenSpecFun_jll v0.5.5+0
  [f50d1b31] Rmath_jll v0.5.1+0
  [1e29f10c] demumble_jll v1.3.0+0
  [477f73a3] libaec_jll v1.1.2+0
  [1317d2d5] oneTBB_jll v2021.12.0+0
  [0dad84c5] ArgTools v1.1.2
  [56f22d72] Artifacts v1.11.0
  [2a0f44e3] Base64 v1.11.0
  [ade2ca70] Dates v1.11.0
  [8ba89e20] Distributed v1.11.0
  [f43a241f] Downloads v1.6.0
  [7b1f6079] FileWatching v1.11.0
  [9fa8497b] Future v1.11.0
  [b77e0a4c] InteractiveUtils v1.11.0
  [4af54fe1] LazyArtifacts v1.11.0
  [b27032c2] LibCURL v0.6.4
  [76f85450] LibGit2 v1.11.0
  [8f399da3] Libdl v1.11.0
  [37e2e46d] LinearAlgebra v1.11.0
  [56ddb016] Logging v1.11.0
  [d6f4376e] Markdown v1.11.0
  [a63ad114] Mmap v1.11.0
  [ca575930] NetworkOptions v1.2.0
  [44cfe95a] Pkg v1.11.0
  [de0858da] Printf v1.11.0
  [9a3f8284] Random v1.11.0
  [ea8e919c] SHA v0.7.0
  [9e88b42a] Serialization v1.11.0
  [1a1011a3] SharedArrays v1.11.0
  [6462fe0b] Sockets v1.11.0
  [2f01184e] SparseArrays v1.11.0
  [4607b0f0] SuiteSparse
  [fa267f1f] TOML v1.0.3
  [a4e569a6] Tar v1.10.0
  [8dfed614] Test v1.11.0
  [cf7118a7] UUIDs v1.11.0
  [4ec0a83e] Unicode v1.11.0
  [e66e0078] CompilerSupportLibraries_jll v1.1.1+0
  [deac9b47] LibCURL_jll v8.6.0+0
  [e37daf67] LibGit2_jll v1.7.2+0
  [29816b5a] LibSSH2_jll v1.11.0+1
  [c8ffd9c3] MbedTLS_jll v2.28.6+0
  [14a3606d] MozillaCACerts_jll v2023.12.12
  [4536629a] OpenBLAS_jll v0.3.27+1
  [05823500] OpenLibm_jll v0.8.1+2
  [bea87d4a] SuiteSparse_jll v7.7.0+0
  [83775a58] Zlib_jll v1.2.13+1
  [8e850b90] libblastrampoline_jll v5.11.0+0
  [8e850ede] nghttp2_jll v1.59.0+0
  [3f19e933] p7zip_jll v17.4.0+2
Info Packages marked with ⌃ and ⌅ have new versions available. Those with ⌃ may be upgradable, but those with ⌅ are restricted by compatibility constraints from upgrading. To see why use `status --outdated -m`
  • Output of versioninfo()
julia> versioninfo()
Julia Version 1.11.1
Commit 8f5b7ca12a (2024-10-16 10:53 UTC)
Build Info:
  Official https://julialang.org/ release
Platform Info:
  OS: Windows (x86_64-w64-mingw32)
  CPU: 16 × 12th Gen Intel(R) Core(TM) i7-12650H
  WORD_SIZE: 64
  LLVM: libLLVM-16.0.6 (ORCJIT, alderlake)
Threads: 10 default, 0 interactive, 5 GC (on 16 virtual cores)
Environment:
  JULIA_NUM_THREADS = 10

Additional context

Add any other context about the problem here.

@jholland1 jholland1 added the bug Something isn't working label Oct 19, 2024
@jholland1 jholland1 changed the title MNIST Example Throws Exception at Optimization.solve MNIST Example Throws Exception at Optimization.solve (in v4.0) Oct 19, 2024
@jholland1
Copy link
Author

Runs to completion (with some errors in the callback function) in v3.5.0. Didn't catch that docs were written for v3.5.0, v4.0 downloaded by default.

@jholland1
Copy link
Author

And no issues noticed on a similar example in the Lux documentation with v4.0.0: https://lux.csail.mit.edu/stable/tutorials/intermediate/1_NeuralODE

@ChrisRackauckas
Copy link
Member

This is addressed in the docs bump #950

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
bug Something isn't working
Projects
None yet
Development

No branches or pull requests

2 participants