-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathSVM.py
38 lines (26 loc) · 917 Bytes
/
SVM.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
import pandas as pd
import numpy as np
from imblearn.over_sampling import RandomOverSampler
from sklearn.model_selection import train_test_split
from sklearn import svm
from sklearn.metrics import accuracy_score
from sklearn.externals import joblib
data = pd.read_csv('Data.csv')
X_data_use = pd.DataFrame()
X_data_use['X'] = data['X']
X_data_use['Y'] = data['Y']
y_data_use = data['click']
# print X_data_use.shape
# print y_data_use.shape
# oversampling of data
ros = RandomOverSampler(random_state=0)
X_resampled, y_resampled = ros.fit_sample(X_data_use, y_data_use)
# print X_resampled.shape
# print y_resampled.shape
# X_train, X_test, y_train, y_test = train_test_split(X_resampled, y_resampled, test_size=0.2, random_state=42)
clf = svm.SVC()
clf.fit(X_resampled, y_resampled)
# y_pred = clf.predict(X_test)
# print accuracy_score(y_test, y_pred)
joblib.dump(clf, 'classifier.pkl')
print "DONE!!!!"