-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathpolicy.py
260 lines (211 loc) · 10.3 KB
/
policy.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
import logging
from pprint import pformat, pprint
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
from torch.distributions import Categorical
import torch.nn.functional as F
logging.basicConfig(format='%(asctime)s %(levelname)-8s %(message)s')
logger = logging.getLogger(__name__)
logger.setLevel(logging.INFO)
eps = np.finfo(np.float32).eps.item()
TICKS_PER_OBSERVATION = 15 # HACK!
# N_DELAY_ENUMS = 5 # HACK!
REWARD_KEYS = ['enemy', 'win', 'xp', 'hp', 'kills', 'death', 'lh', 'denies', 'tower_hp', 'mana']
class MaskedCategorical():
def __init__(self, log_probs, mask):
self.log_probs = log_probs
self.mask = mask
self.masked_probs = torch.exp(log_probs).clone()
self.masked_probs[~mask] = 0.
# print('self.masked_probs=', self.masked_probs)
def sample(self):
return torch.multinomial(self.masked_probs[-1], num_samples=1)
class Policy(nn.Module):
TICKS_PER_SECOND = 30
MAX_MOVE_SPEED = 550
MAX_MOVE_IN_OBS = (MAX_MOVE_SPEED / TICKS_PER_SECOND) * TICKS_PER_OBSERVATION
N_MOVE_ENUMS = 9
MOVE_ENUMS = np.arange(N_MOVE_ENUMS, dtype=np.float32) - int(N_MOVE_ENUMS / 2)
MOVE_ENUMS *= MAX_MOVE_IN_OBS / (N_MOVE_ENUMS - 1) * 2
OBSERVATIONS_PER_SECOND = TICKS_PER_SECOND / TICKS_PER_OBSERVATION
MAX_UNITS = 1+5+16+16+1+1
ACTION_OUTPUT_COUNTS = {'enum': 4, 'x': 9, 'y': 9, 'target_unit': MAX_UNITS, 'ability': 3}
OUTPUT_KEYS = ACTION_OUTPUT_COUNTS.keys()
INPUT_KEYS = ['env', 'allied_heroes', 'enemy_heroes', 'allied_nonheroes', 'enemy_nonheroes',
'allied_towers', 'enemy_towers']
def __init__(self):
super().__init__()
self.affine_env = nn.Linear(3, 128)
self.affine_unit_basic_stats = nn.Linear(12, 128)
self.affine_unit_ah = nn.Linear(128, 128)
self.affine_unit_eh = nn.Linear(128, 128)
self.affine_unit_anh = nn.Linear(128, 128)
self.affine_unit_enh = nn.Linear(128, 128)
self.affine_unit_ath = nn.Linear(128, 128)
self.affine_unit_eth = nn.Linear(128, 128)
self.affine_pre_rnn = nn.Linear(896, 256)
self.rnn = nn.GRU(input_size=256, hidden_size=256, num_layers=1, batch_first=True)
# Heads
self.affine_head_enum = nn.Linear(256, 4)
self.affine_move_x = nn.Linear(256, self.N_MOVE_ENUMS)
self.affine_move_y = nn.Linear(256, self.N_MOVE_ENUMS)
# self.affine_head_delay = nn.Linear(128, N_DELAY_ENUMS)
self.affine_unit_attention = nn.Linear(256, 128)
self.affine_head_ability = nn.Linear(256, 3)
self.affine_value = nn.Linear(256, 1)
def init_hidden(self):
return torch.zeros([1, 1, 256], dtype=torch.float32)
def single(self, hidden, **kwargs):
"""Inputs a single element of a sequence."""
for k in kwargs:
kwargs[k] = kwargs[k].unsqueeze(0).unsqueeze(0)
return self.__call__(**kwargs, hidden=hidden)
def sequence(self, hidden, **kwargs):
"""Inputs a single sequence."""
for k in kwargs:
kwargs[k] = kwargs[k].unsqueeze(0)
return self.__call__(**kwargs, hidden=hidden)
def forward(self, env, allied_heroes, enemy_heroes, allied_nonheroes, enemy_nonheroes,
allied_towers, enemy_towers, hidden):
"""Input as batch."""
# Environment.
env = F.relu(self.affine_env(env)) # (b, s, n)
# Allied Heroes.
ah_basic = F.relu(self.affine_unit_basic_stats(allied_heroes))
ah_embedding = self.affine_unit_ah(ah_basic) # (b, s, units, n)
ah_embedding_max, _ = torch.max(ah_embedding, dim=2) # (b, s, n)
# Enemy Heroes.
eh_basic = F.relu(self.affine_unit_basic_stats(enemy_heroes))
eh_embedding = self.affine_unit_eh(eh_basic) # (b, s, units, n)
eh_embedding_max, _ = torch.max(eh_embedding, dim=2) # (b, s, n)
# Allied Non-Heroes.
anh_basic = F.relu(self.affine_unit_basic_stats(allied_nonheroes))
anh_embedding = self.affine_unit_anh(anh_basic) # (b, s, units, n)
anh_embedding_max, _ = torch.max(anh_embedding, dim=2) # (b, s, n)
# Enemy Non-Heroes.
enh_basic = F.relu(self.affine_unit_basic_stats(enemy_nonheroes))
enh_embedding = self.affine_unit_enh(enh_basic) # (b, s, units, n)
enh_embedding_max, _ = torch.max(enh_embedding, dim=2) # (b, s, n)
# Allied Towers.
ath_basic = F.relu(self.affine_unit_basic_stats(allied_towers))
ath_embedding = self.affine_unit_ath(ath_basic) # (b, s, units, n)
ath_embedding_max, _ = torch.max(ath_embedding, dim=2) # (b, s, n)
# Enemy Towers.
eth_basic = F.relu(self.affine_unit_basic_stats(enemy_towers))
eth_embedding = self.affine_unit_eth(eth_basic) # (b, s, units, n)
eth_embedding_max, _ = torch.max(enh_embedding, dim=2) # (b, s, n)
# Create the full unit embedding
unit_embedding = torch.cat((ah_embedding, eh_embedding, anh_embedding, enh_embedding, ath_embedding,
eth_embedding), dim=2) # (b, s, units, n)
unit_embedding = torch.transpose(unit_embedding, dim0=3, dim1=2) # (b, s, units, n) -> (b, s, n, units)
# Combine for RNN.
x = torch.cat((env, ah_embedding_max, eh_embedding_max, anh_embedding_max, enh_embedding_max,
ath_embedding_max, eth_embedding_max), dim=2) # (b, s, n)
x = F.relu(self.affine_pre_rnn(x)) # (b, s, n)
# RNN
x, hidden = self.rnn(x, hidden) # (b, s, n)
# Unit attention.
unit_attention = self.affine_unit_attention(x) # (b, s, n)
unit_attention = unit_attention.unsqueeze(2) # (b, s, n) -> (b, s, 1, n)
# Heads.
action_scores_x = self.affine_move_x(x)
action_scores_y = self.affine_move_y(x)
action_scores_enum = self.affine_head_enum(x)
# action_delay_enum = self.affine_head_delay(x)
action_target_unit = torch.matmul(unit_attention, unit_embedding) # (b, s, 1, n) * (b, s, n, units) = (b, s, 1, units)
action_target_unit = action_target_unit.squeeze(2) # (b, s, 1, units) -> (b, s, units)
action_ability = self.affine_head_ability(x)
value = self.affine_value(x) # (b, s, 1)
d = {
'enum': action_scores_enum, # (b, s, n)
'x': action_scores_x, # (b, s, n)
'y': action_scores_y, # (b, s, n)
# delay=F.softmax(action_delay_enum, dim=2),
'target_unit': action_target_unit, # (b, s, units)
'ability': action_ability, # (b, s, n)
}
# Return
return d, value, hidden
@classmethod
def masked_softmax(cls, logits, mask, dim=2):
"""Returns log-probabilities."""
exp = torch.exp(logits)
masked_exp = exp.clone()
masked_exp[~mask] = 0.
masked_sumexp = masked_exp.sum(dim, keepdim=True)
logsumexp = torch.log(masked_sumexp)
log_probs = logits - logsumexp
return log_probs
@classmethod
def flatten_selections(cls, inputs):
d = {}
for key, count in cls.ACTION_OUTPUT_COUNTS.items():
t = torch.zeros(count, dtype=torch.uint8)
if key in inputs:
t[inputs[key]] = 1
d[key] = t
return d
@classmethod
def sample_action(cls, logits, mask):
# TODO(tzaman): Have the sampler kind be user-configurable.
log_probs = cls.masked_softmax(logits=logits, mask=mask)
sample = MaskedCategorical(log_probs=log_probs, mask=mask).sample()
return sample
@classmethod
def select_actions(cls, heads_logits, masks):
"""From all heads, select actions."""
action_dict = {}
# First select the high-level action.
action_dict['enum'] = cls.sample_action(heads_logits['enum'], mask=masks['enum'])
if action_dict['enum'] == 0: # Nothing
pass
elif action_dict['enum'] == 1: # Move
action_dict['x'] = cls.sample_action(heads_logits['x'], mask=masks['x'])
action_dict['y'] = cls.sample_action(heads_logits['y'], mask=masks['y'])
elif action_dict['enum'] == 2: # Attack
action_dict['target_unit'] = cls.sample_action(heads_logits['target_unit'], mask=masks['target_unit'])
elif action_dict['enum'] == 3: # Ability
action_dict['ability'] = cls.sample_action(heads_logits['ability'], mask=masks['ability'])
else:
ValueError("Invalid Action Selection.")
return action_dict
@classmethod
def head_masks(cls, selections):
masks = {}
for key, val in cls.ACTION_OUTPUT_COUNTS.items():
fn = torch.ones if key in selections else torch.zeros
masks[key] = fn(1, 1, val).byte()
return masks
@staticmethod
def ability_available(ability):
return ability.is_activated and ability.level > 0 and ability.cooldown_remaining == 0 \
and ability.is_fully_castable
@classmethod
def action_masks(cls, player_unit, unit_handles):
"""Mask the head with possible actions."""
if not player_unit.is_alive:
# Dead player means it can only do the NoOp.
masks = {key: torch.zeros(1, 1, val).byte() for key, val in cls.ACTION_OUTPUT_COUNTS.items()}
masks['enum'][0, 0, 0] = 1
return masks
masks = {key: torch.ones(1, 1, val).byte() for key, val in cls.ACTION_OUTPUT_COUNTS.items()}
for ability in player_unit.abilities:
if ability.slot >= 3:
continue
# Note: `is_fully_castable` implies there is mana for it.
# Note: `is_in_ability_phase` means it is currently doing an ability.
if not cls.ability_available(ability):
# Can't use ability
masks['ability'][0, 0, ability.slot] = 0
if not masks['ability'].any():
# No abilities possible, so we cannot choose to use any abilities.
masks['enum'][0, 0, 3] = 0
valid_units = unit_handles != -1
valid_units[0] = 0 # The 'self' hero can never be targetted.
if not valid_units.any():
# All units invalid, so we cannot choose the high-level attack head:
masks['enum'][0, 0, 2] = 0
masks['target_unit'][0, 0] = valid_units
return masks