-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathfolder_composite.py
270 lines (215 loc) · 10.2 KB
/
folder_composite.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
from torchvision.datasets.vision import VisionDataset
from PIL import Image
import os
import os.path
import sys
import random
import numpy as np
import torch
import pdb
""" We have modified the dataloader such that along with the original image and the corresponding target, we also
return a composite image of 2x2 grid, containing 3 other images chosen from a random category excluding the target.
Although we return the ground truth quadrant for the
positive image in the 2x2 composite image, we do not currently use it. Instead, we split the batch sequentially
corresponding to the 4 quadrants. This should not affect the loss since the images themselves are shuffled within
the batch and the loss is computed as the mean over the batch.
This code is specifically for an image of resolution - 224x224 and composite image of resolution - 448x448.
"""
def has_file_allowed_extension(filename, extensions):
"""Checks if a file is an allowed extension.
Args:
filename (string): path to a file
extensions (tuple of strings): extensions to consider (lowercase)
Returns:
bool: True if the filename ends with one of given extensions
"""
return filename.lower().endswith(extensions)
def is_image_file(filename):
"""Checks if a file is an allowed image extension.
Args:
filename (string): path to a file
Returns:
bool: True if the filename ends with a known image extension
"""
return has_file_allowed_extension(filename, IMG_EXTENSIONS)
def make_dataset(dir, class_to_idx, extensions=None, is_valid_file=None):
images = []
target_idx_to_im_path_dict = {}
dir = os.path.expanduser(dir)
if not ((extensions is None) ^ (is_valid_file is None)):
raise ValueError("Both extensions and is_valid_file cannot be None or not None at the same time")
if extensions is not None:
def is_valid_file(x):
return has_file_allowed_extension(x, extensions)
for target in sorted(class_to_idx.keys()):
d = os.path.join(dir, target)
if not os.path.isdir(d):
continue
target_idx = class_to_idx[target]
if target_idx not in target_idx_to_im_path_dict:
target_idx_to_im_path_dict[target_idx] = []
for root, _, fnames in sorted(os.walk(d)):
for fname in sorted(fnames):
path = os.path.join(root, fname)
if is_valid_file(path):
item = (path, target_idx)
images.append(item)
# Also add to a dictionary mapping the target to the image path - vipin
target_idx_to_im_path_dict[target_idx].append(path)
return images, target_idx_to_im_path_dict
class DatasetFolder(VisionDataset):
"""A generic data loader where the samples are arranged in this way: ::
root/class_x/xxx.ext
root/class_x/xxy.ext
root/class_x/xxz.ext
root/class_y/123.ext
root/class_y/nsdf3.ext
root/class_y/asd932_.ext
Args:
root (string): Root directory path.
loader (callable): A function to load a sample given its path.
extensions (tuple[string]): A list of allowed extensions.
both extensions and is_valid_file should not be passed.
transform (callable, optional): A function/transform that takes in
a sample and returns a transformed version.
E.g, ``transforms.RandomCrop`` for images.
target_transform (callable, optional): A function/transform that takes
in the target and transforms it.
is_valid_file (callable, optional): A function that takes path of a file
and check if the file is a valid file (used to check of corrupt files)
both extensions and is_valid_file should not be passed.
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
samples (list): List of (sample path, class_index) tuples
targets (list): The class_index value for each image in the dataset
"""
def __init__(self, root, loader, extensions=None, transform=None,
target_transform=None, is_valid_file=None):
super(DatasetFolder, self).__init__(root, transform=transform,
target_transform=target_transform)
classes, class_to_idx = self._find_classes(self.root)
samples, target_idx_to_im_path_dict = make_dataset(self.root, class_to_idx, extensions, is_valid_file)
if len(samples) == 0:
raise (RuntimeError("Found 0 files in subfolders of: " + self.root + "\n"
"Supported extensions are: " + ",".join(extensions)))
self.loader = loader
self.extensions = extensions
self.classes = classes
self.class_to_idx = class_to_idx
self.samples = samples
self.targets = [s[1] for s in samples]
self.category_indices = np.arange(1000) # hard-coded for imagenet num classes
self.target_idx_to_im_path_dict = target_idx_to_im_path_dict # mapping from target idx to im paths
# we use x_start, x_end, y_start, y_end
self.quadrant_start_end_dict = {
0: (0, 224, 0, 224),
1: (0, 224, 224, 448),
2: (224, 448, 0, 224),
3: (224, 448, 224, 448)
}
self.neg_category_indices = list(range(1000))
def _find_classes(self, dir):
"""
Finds the class folders in a dataset.
Args:
dir (string): Root directory path.
Returns:
tuple: (classes, class_to_idx) where classes are relative to (dir), and class_to_idx is a dictionary.
Ensures:
No class is a subdirectory of another.
"""
if sys.version_info >= (3, 5):
# Faster and available in Python 3.5 and above
classes = [d.name for d in os.scandir(dir) if d.is_dir()]
else:
classes = [d for d in os.listdir(dir) if os.path.isdir(os.path.join(dir, d))]
classes.sort()
class_to_idx = {classes[i]: i for i in range(len(classes))}
return classes, class_to_idx
def __getitem__(self, index):
"""
Args:
index (int): Index
Returns:
tuple: (sample, target) where target is class_index of the target class.
"""
path, target = self.samples[index]
sample = self.loader(path)
sample = self.transform(sample)
orig_height, orig_width = sample.shape[-2], sample.shape[-1]
# We need to return the original image, original target, composite image, GT quadrant for original
# pick 3 other categories to create the composite image
negative_category_indices = self.neg_category_indices.copy()
# remove the GT category from neg list
del negative_category_indices[negative_category_indices.index(target)]
rand_cat_indices = np.random.choice(negative_category_indices, 3)
rand_im_list = []
for rand_cat_index in rand_cat_indices:
rand_cat_im_path_list = self.target_idx_to_im_path_dict[rand_cat_index]
rand_cat_im_path = random.choice(rand_cat_im_path_list)
rand_image = self.loader(rand_cat_im_path)
rand_image = self.transform(rand_image)
rand_im_list.append(rand_image)
gt_quadrant = random.randint(0, 3)
composite_image = torch.zeros((3, orig_height*2, orig_width*2), dtype=sample.dtype)
for quad_index in range(4):
x_start, x_end, y_start, y_end = self.quadrant_start_end_dict[quad_index]
if quad_index != gt_quadrant:
im = rand_im_list.pop()
else:
im = sample
composite_image[:, x_start: x_end, y_start: y_end] = im[:, :, :]
if self.target_transform is not None:
target = self.target_transform(target)
return sample, target, composite_image, gt_quadrant
def __len__(self):
return len(self.samples)
IMG_EXTENSIONS = ('.jpg', '.jpeg', '.png', '.ppm', '.bmp', '.pgm', '.tif', '.tiff', '.webp')
def pil_loader(path):
# open path as file to avoid ResourceWarning (https://github.com/python-pillow/Pillow/issues/835)
with open(path, 'rb') as f:
img = Image.open(f)
return img.convert('RGB')
def accimage_loader(path):
import accimage
try:
return accimage.Image(path)
except IOError:
# Potentially a decoding problem, fall back to PIL.Image
return pil_loader(path)
def default_loader(path):
from torchvision import get_image_backend
if get_image_backend() == 'accimage':
return accimage_loader(path)
else:
return pil_loader(path)
class ImageFolder(DatasetFolder):
"""A generic data loader where the images are arranged in this way: ::
root/dog/xxx.png
root/dog/xxy.png
root/dog/xxz.png
root/cat/123.png
root/cat/nsdf3.png
root/cat/asd932_.png
Args:
root (string): Root directory path.
transform (callable, optional): A function/transform that takes in an PIL image
and returns a transformed version. E.g, ``transforms.RandomCrop``
target_transform (callable, optional): A function/transform that takes in the
target and transforms it.
loader (callable, optional): A function to load an image given its path.
is_valid_file (callable, optional): A function that takes path of an Image file
and check if the file is a valid file (used to check of corrupt files)
Attributes:
classes (list): List of the class names.
class_to_idx (dict): Dict with items (class_name, class_index).
imgs (list): List of (image path, class_index) tuples
"""
def __init__(self, root, transform=None, target_transform=None,
loader=default_loader, is_valid_file=None):
super(ImageFolder, self).__init__(root, loader, IMG_EXTENSIONS if is_valid_file is None else None,
transform=transform,
target_transform=target_transform,
is_valid_file=is_valid_file)
self.imgs = self.samples