-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathutils.py
502 lines (375 loc) · 16.5 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
from __future__ import print_function
import math
import random
import torch
import torchvision.transforms as transforms
import warnings
from torch.nn import functional as F
import shutil
import torch.utils.data as data
import os
from PIL import Image
import torch
import numpy as np
def compute_gradcam(output, feats, target):
"""
Compute normalized Grad-CAM for the given target using the model output and features
:param output:
:param feats:
:param target:
:return:
"""
eps = 1e-8
target = target.cpu().numpy()
one_hot = np.zeros((output.shape[0], output.shape[-1]), dtype=np.float32)
indices_range = np.arange(output.shape[0])
one_hot[indices_range, target[indices_range]] = 1
one_hot = torch.from_numpy(one_hot)
one_hot.requires_grad = True
# Compute the Grad-CAM for the original image
one_hot_cuda = torch.sum(one_hot.cuda() * output)
dy_dz1, = torch.autograd.grad(one_hot_cuda, feats, grad_outputs=torch.ones(one_hot_cuda.size()).cuda(),
retain_graph=True, create_graph=True)
# We compute the dot product of grad and features (Element-wise Grad-CAM) to preserve grad spatial locations
gcam512_1 = dy_dz1 * feats
gradcam = gcam512_1.sum(dim=1)
gradcam = torch.nn.ReLU(inplace=True)(gradcam)
spatial_sum1 = gradcam.sum(dim=[1, 2]).unsqueeze(-1).unsqueeze(-1)
gradcam = (gradcam / (spatial_sum1 + eps)) + eps
return gradcam
def accuracy(output, target, topk=(1,)):
"""Computes the precision@k for the specified values of k"""
maxk = max(topk)
batch_size = target.size(0)
_, pred = output.topk(maxk, 1, True, True)
pred = pred.t()
correct = pred.eq(target.view(1, -1).expand_as(pred))
res = []
for k in topk:
correct_k = correct[:k].view(-1).float().sum(0, keepdim=True)
res.append(correct_k.mul_(100.0 / batch_size))
return res
def save_checkpoint(state, is_best, args):
save_dir = args.save_dir
epoch = state['epoch']
filename = 'checkpoint_coco_' + args.arch + '_' + str(epoch).zfill(3) + '.pth.tar'
save_path = os.path.join(save_dir, filename)
torch.save(state, save_path)
if is_best:
best_filename = 'model_best.pth.tar'
best_save_path = os.path.join(save_dir, best_filename)
shutil.copyfile(save_path, best_save_path)
class AverageMeter(object):
def __init__(self):
self.val = None
self.sum = None
self.cnt = None
self.avg = None
self.ema = None
self.initialized = False
def update(self, val, n=1):
if not self.initialized:
self.initialize(val, n)
else:
self.add(val, n)
def initialize(self, val, n):
self.val = val
self.sum = val * n
self.cnt = n
self.avg = val
self.ema = val
self.initialized = True
def add(self, val, n):
self.val = val
self.sum += val * n
self.cnt += n
self.avg = self.sum / self.cnt
self.ema = self.ema * 0.99 + self.val * 0.01
def inter_and_union(pred, mask, num_class):
pred = np.asarray(pred, dtype=np.uint8).copy()
mask = np.asarray(mask, dtype=np.uint8).copy()
# 255 -> 0
pred += 1
mask += 1
pred = pred * (mask > 0)
inter = pred * (pred == mask)
(area_inter, _) = np.histogram(inter, bins=num_class, range=(1, num_class))
(area_pred, _) = np.histogram(pred, bins=num_class, range=(1, num_class))
(area_mask, _) = np.histogram(mask, bins=num_class, range=(1, num_class))
area_union = area_pred + area_mask - area_inter
return (area_inter, area_union)
def preprocess(image, mask, flip=False, scale=None, crop=None):
if flip:
if random.random() < 0.5:
image = image.transpose(Image.FLIP_LEFT_RIGHT)
mask = mask.transpose(Image.FLIP_LEFT_RIGHT)
if scale:
w, h = image.size
rand_log_scale = math.log(scale[0], 2) + random.random() * (math.log(scale[1], 2) - math.log(scale[0], 2))
random_scale = math.pow(2, rand_log_scale)
new_size = (int(round(w * random_scale)), int(round(h * random_scale)))
image = image.resize(new_size, Image.ANTIALIAS)
mask = mask.resize(new_size, Image.NEAREST)
data_transforms = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
image = data_transforms(image)
mask = torch.LongTensor(np.array(mask).astype(np.int64))
if crop:
h, w = image.shape[1], image.shape[2]
ori_h, ori_w = image.shape[1], image.shape[2]
pad_tb = max(0, int((1 + crop[0] - h) / 2))
pad_lr = max(0, int((1 + crop[1] - w) / 2))
image = torch.nn.ZeroPad2d((pad_lr, pad_lr, pad_tb, pad_tb))(image)
mask = torch.nn.ConstantPad2d((pad_lr, pad_lr, pad_tb, pad_tb), 255)(mask)
h, w = image.shape[1], image.shape[2]
i = random.randint(0, h - crop[0])
j = random.randint(0, w - crop[1])
image = image[:, i:i + crop[0], j:j + crop[1]]
mask = mask[i:i + crop[0], j:j + crop[1]]
return image, mask, pad_tb - j, pad_lr - i, ori_h, ori_w
# pascal dataloader
class VOCSegmentation(data.Dataset):
CLASSES = [
'background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus',
'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse',
'motorbike', 'person', 'potted-plant', 'sheep', 'sofa', 'train',
'tv/monitor'
]
def __init__(self, root, train=True, transform=None, target_transform=None, download=False, crop_size=None):
self.root = root
_voc_root = os.path.join(self.root, 'VOC2012')
_list_dir = os.path.join(_voc_root, 'list')
self.transform = transform
self.target_transform = target_transform
self.train = train
self.crop_size = crop_size
if download:
self.download()
if self.train:
_list_f = os.path.join(_list_dir, 'train_aug.txt')
else:
_list_f = os.path.join(_list_dir, 'val.txt')
self.images = []
self.masks = []
with open(_list_f, 'r') as lines:
for line in lines:
_image = _voc_root + line.split()[0]
_mask = _voc_root + line.split()[1]
assert os.path.isfile(_image)
assert os.path.isfile(_mask)
self.images.append(_image)
self.masks.append(_mask)
def __getitem__(self, index):
_img = Image.open(self.images[index]).convert('RGB')
_target = Image.open(self.masks[index])
_img, _target, a, b, h, w = preprocess(_img, _target,
flip=True if self.train else False,
scale=(0.5, 2.0) if self.train else None,
crop=(self.crop_size, self.crop_size))
if self.transform is not None:
_img = self.transform(_img)
if self.target_transform is not None:
_target = self.target_transform(_target)
return _img, _target, a, b, h, w # used for visualizing
def __len__(self):
return len(self.images)
def download(self):
raise NotImplementedError('Automatic download not yet implemented.')
# flops counter
def add_flops_counting_methods(net_main_module):
"""Adds flops counting functions to an existing model. After that
the flops count should be activated and the model should be run on an input
image.
Example:
fcn = add_flops_counting_methods(fcn)
fcn = fcn.cuda().train()
fcn.start_flops_count()
_ = fcn(batch)
fcn.compute_average_flops_cost() / 1e9 / 2 # Result in GFLOPs per image in batch
Important: dividing by 2 only works for resnet models -- see below for the details
of flops computation.
Attention: we are counting multiply-add as two flops in this work, because in
most resnet models convolutions are bias-free (BN layers act as bias there)
and it makes sense to count muliply and add as separate flops therefore.
This is why in the above example we divide by 2 in order to be consistent with
most modern benchmarks. For example in "Spatially Adaptive Computatin Time for Residual
Networks" by Figurnov et al multiply-add was counted as two flops.
This module computes the average flops which is necessary for dynamic networks which
have different number of executed layers. For static networks it is enough to run the network
once and get statistics (above example).
Implementation:
The module works by adding batch_count to the main module which tracks the sum
of all batch sizes that were run through the network.
Also each convolutional layer of the network tracks the overall number of flops
performed.
The parameters are updated with the help of registered hook-functions which
are being called each time the respective layer is executed.
Parameters
----------
net_main_module : torch.nn.Module
Main module containing network
Returns
-------
net_main_module : torch.nn.Module
Updated main module with new methods/attributes that are used
to compute flops.
"""
# adding additional methods to the existing module object,
# this is done this way so that each function has access to self object
net_main_module.start_flops_count = start_flops_count.__get__(net_main_module)
net_main_module.stop_flops_count = stop_flops_count.__get__(net_main_module)
net_main_module.reset_flops_count = reset_flops_count.__get__(net_main_module)
net_main_module.compute_average_flops_cost = compute_average_flops_cost.__get__(net_main_module)
net_main_module.reset_flops_count()
# Adding variables necessary for masked flops computation
net_main_module.apply(add_flops_mask_variable_or_reset)
return net_main_module
def compute_average_flops_cost(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Returns current mean flops consumption per image.
"""
batches_count = self.__batch_counter__
flops_sum = 0
for module in self.modules():
if hasattr(module, '__flops__'): # is_supported_instance(module)
flops_sum += module.__flops__
return flops_sum / batches_count
def start_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Activates the computation of mean flops consumption per image.
Call it before you run the network.
"""
add_batch_counter_hook_function(self)
self.apply(add_flops_counter_hook_function)
def stop_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Stops computing the mean flops consumption per image.
Call whenever you want to pause the computation.
"""
remove_batch_counter_hook_function(self)
self.apply(remove_flops_counter_hook_function)
def reset_flops_count(self):
"""
A method that will be available after add_flops_counting_methods() is called
on a desired net object.
Resets statistics computed so far.
"""
add_batch_counter_variables_or_reset(self)
self.apply(add_flops_counter_variable_or_reset)
def add_flops_mask(module, mask):
def add_flops_mask_func(module):
if isinstance(module, torch.nn.Conv2d):
module.__mask__ = mask
module.apply(add_flops_mask_func)
def remove_flops_mask(module):
module.apply(add_flops_mask_variable_or_reset)
# ---- Internal functions
def is_supported_instance(module):
if isinstance(module, torch.nn.Conv2d) or isinstance(module, torch.nn.ReLU) \
or isinstance(module, torch.nn.PReLU) or isinstance(module, torch.nn.ELU) \
or isinstance(module, torch.nn.LeakyReLU) or isinstance(module, torch.nn.ReLU6) \
or isinstance(module, torch.nn.Linear) or isinstance(module, torch.nn.MaxPool2d) \
or isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.BatchNorm2d):
return True
return False
def empty_flops_counter_hook(module, input, output):
module.__flops__ += 0
def relu_flops_counter_hook(module, input, output):
input = input[0]
batch_size = input.shape[0]
active_elements_count = batch_size
for val in input.shape[1:]:
active_elements_count *= val
module.__flops__ += active_elements_count
def linear_flops_counter_hook(module, input, output):
input = input[0]
batch_size = input.shape[0]
module.__flops__ += batch_size * input.shape[1] * output.shape[1]
def pool_flops_counter_hook(module, input, output):
input = input[0]
module.__flops__ += np.prod(input.shape)
def bn_flops_counter_hook(module, input, output):
module.affine
input = input[0]
batch_flops = np.prod(input.shape)
if module.affine:
batch_flops *= 2
module.__flops__ += batch_flops
def conv_flops_counter_hook(conv_module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
output_height, output_width = output.shape[2:]
kernel_height, kernel_width = conv_module.kernel_size
in_channels = conv_module.in_channels
out_channels = conv_module.out_channels
groups = conv_module.groups
filters_per_channel = out_channels // groups
conv_per_position_flops = kernel_height * kernel_width * in_channels * filters_per_channel
active_elements_count = batch_size * output_height * output_width
if conv_module.__mask__ is not None:
# (b, 1, h, w)
flops_mask = conv_module.__mask__.expand(batch_size, 1, output_height, output_width)
active_elements_count = flops_mask.sum()
overall_conv_flops = conv_per_position_flops * active_elements_count
bias_flops = 0
if conv_module.bias is not None:
bias_flops = out_channels * active_elements_count
overall_flops = overall_conv_flops + bias_flops
conv_module.__flops__ += overall_flops
def batch_counter_hook(module, input, output):
# Can have multiple inputs, getting the first one
input = input[0]
batch_size = input.shape[0]
module.__batch_counter__ += batch_size
def add_batch_counter_variables_or_reset(module):
module.__batch_counter__ = 0
def add_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
return
handle = module.register_forward_hook(batch_counter_hook)
module.__batch_counter_handle__ = handle
def remove_batch_counter_hook_function(module):
if hasattr(module, '__batch_counter_handle__'):
module.__batch_counter_handle__.remove()
del module.__batch_counter_handle__
def add_flops_counter_variable_or_reset(module):
if is_supported_instance(module):
module.__flops__ = 0
def add_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
return
if isinstance(module, torch.nn.Conv2d):
handle = module.register_forward_hook(conv_flops_counter_hook)
elif isinstance(module, torch.nn.ReLU) or isinstance(module, torch.nn.PReLU) \
or isinstance(module, torch.nn.ELU) or isinstance(module, torch.nn.LeakyReLU) \
or isinstance(module, torch.nn.ReLU6):
handle = module.register_forward_hook(relu_flops_counter_hook)
elif isinstance(module, torch.nn.Linear):
handle = module.register_forward_hook(linear_flops_counter_hook)
elif isinstance(module, torch.nn.AvgPool2d) or isinstance(module, torch.nn.MaxPool2d):
handle = module.register_forward_hook(pool_flops_counter_hook)
elif isinstance(module, torch.nn.BatchNorm2d):
handle = module.register_forward_hook(bn_flops_counter_hook)
else:
handle = module.register_forward_hook(empty_flops_counter_hook)
module.__flops_handle__ = handle
def remove_flops_counter_hook_function(module):
if is_supported_instance(module):
if hasattr(module, '__flops_handle__'):
module.__flops_handle__.remove()
del module.__flops_handle__
# --- Masked flops counting
# Also being run in the initialization
def add_flops_mask_variable_or_reset(module):
if is_supported_instance(module):
module.__mask__ = None