-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathfinal_demo.py
224 lines (206 loc) · 7.02 KB
/
final_demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
# -*- coding: utf-8 -*-
from math import sqrt
import matplotlib.pyplot as plt; plt.rcdefaults()
import numpy as np
import matplotlib.pyplot as plt
from sample_dt import Dataset_A
from datasett import dataset
print(Dataset_A)
Dataset=Dataset_A
"""def worth():
Dataset=Dataset_A
wor=nwor=0
i=0
while i<len(Dataset):
if(Dataset[i][0]==1):
wor+=1
else:
nwor+=1
i+=1
print("Worth course \nout of ",len(Dataset))
print("Worth",wor,"\nNot worth",nwor)
worth()"""
def coll_filter():
def pearson_correlation(person1,person2):
both_rated = {}
for item in dataset[person1]:
if item in dataset[person2]:
both_rated[item] = 1
number_of_ratings = len(both_rated)
if number_of_ratings == 0:
return 0
# Add up all the preferences of each user
person1_preferences_sum = sum([dataset[person1][item] for item in both_rated])
person2_preferences_sum = sum([dataset[person2][item] for item in both_rated])
person1_square_preferences_sum = sum([pow(dataset[person1][item],2) for item in both_rated])
person2_square_preferences_sum = sum([pow(dataset[person2][item],2) for item in both_rated])
product_sum_of_both_users = sum([dataset[person1][item] * dataset[person2][item] for item in both_rated])
numerator_value = product_sum_of_both_users - (person1_preferences_sum*person2_preferences_sum/number_of_ratings)
denominator_value = sqrt((person1_square_preferences_sum - pow(person1_preferences_sum,2)/number_of_ratings) * (person2_square_preferences_sum -pow(person2_preferences_sum,2)/number_of_ratings))
if denominator_value == 0:
return 0
else:
r = numerator_value/denominator_value
return r
def most_similar_users(person,number_of_users):
scores = [(pearson_correlation(person,other_person),other_person) for other_person in dataset if other_person != person ]
scores.sort()
scores.reverse()
return scores[0:number_of_users]
def user_recommendations(person):
totals = {}
simSums = {}
rankings_list =[]
for other in dataset:
if other == person:
continue
sim = pearson_correlation(person,other)
if sim <=0:
continue
for item in dataset[other]:
if item not in dataset[person] or dataset[person][item] == 0:
totals.setdefault(item,0)
totals[item] += dataset[other][item]* sim
simSums.setdefault(item,0)
simSums[item]+= sim
rankings = [(total/simSums[item],item) for item,total in totals.items()]
rankings.sort()
rankings.reverse()
recommendataions_list = [(recommend_item,score) for score,recommend_item in rankings]
return recommendataions_list
new=user_recommendations('Alumni5')
dataset['Alumni5'].update(new)
dataset['Alumni5']['ds']=round(dataset['Alumni5']['ds'],1)
dataset['Alumni5']['python']=round(dataset['Alumni5']['python'],1)
new=user_recommendations('Alumni4')
dataset["Alumni4"].update(new)
dataset['Alumni4']['stat']=round(dataset['Alumni4']['stat'],1)
csa=ppl=mfcs=ds=stat=python=0
for key in dataset:
ppl+=dataset[key]['ppl']
csa+=dataset[key]['csa']
stat+=dataset[key]['stat']
mfcs+=dataset[key]['mfcs']
ds+=dataset[key]['ds']
python+=dataset[key]['python']
print("ppl:",ppl,"csa:",csa,"stat:",stat,"mfcs:",mfcs,"ds:",ds,"python:",python)
mean=[]
print("length of dataset",len(Dataset))
mean.append(ppl/len(dataset))
mean.append(csa/len(dataset))
mean.append(round(stat/len(dataset),1))
mean.append(mfcs/len(dataset))
mean.append(round(ds/len(dataset),1))
mean.append(round(python/len(dataset)))
print(mean)
mean.sort()
mean.reverse()
print(mean)
objects = ('python','stat','mfcs','ds','csa','ppl')
y_pos = np.arange(len(objects))
plt.bar(y_pos, mean, align='center', alpha=0.75)
plt.xticks(y_pos, objects)
plt.ylabel('rating')
plt.xlabel('courses')
plt.title('overall rating for sem1')
plt.show()
coll_filter()
"""def lab():
i=0
laby=labn=0
while i<len(Dataset):
if(Dataset[i][3]==1):
laby+=1
else:
labn+=1
i+=1
print("\n\nLab for this course\nOut of ",len(Dataset))
print("lab needed",laby,"\nNot needed",labn)
lab()
def content():
i=0
cy=cn=0
while i<len(Dataset):
if(Dataset[i][2]==1):
cy+=1
else:
cn+=1
i+=1
print("\n\nContent of this course\nout of",len(Dataset))
print("Content ok:",cy,"\nNot ok:",cn)
content()
def precourse():
course_list=[]
py=pn=0
i=0
while i<len(Dataset):
s=str(Dataset[i][3])
s=s.lower()
if(s=='no' or s=='-'):
pn+=1
else:
py+=1
if(s not in course_list):
course_list.append(Dataset[i][3])
i+=1
print("Precourses list\n")
print(course_list,"\n precourse :",py,"\n No precourses required",pn)
def lab():
i=0
laby=labn=0
while i<len(Dataset):
if(Dataset[i][6]==1):
laby+=1
else:
labn+=1
i+=1
print("\n\nLab for this course\nOut of ",len(Dataset))
print("lab needed",laby,"\nNot needed",labn)
lab()
precourse()
def suggest():
course_list=[]
py=pn=0
i=0
while i<len(Dataset):
s=str(Dataset[i][7])
s=s.lower()
if(s=='no' or s=='-'):
pn+=1
else:
py+=1
if(s not in course_list):
course_list.append(Dataset[i][3])
i+=1
print("\n\nOther course Suggestion\n")
print(course_list,"\nSuggested:",py,"\nNot suggested:",pn)
def lab():
i=0
laby=labn=0
while i<len(Dataset):
if(Dataset[i][9]==1):
laby+=1
else:
labn+=1
i+=1
print("\n\nLab for this course\nOut of ",len(Dataset))
print("lab needed",laby,"\nNot needed",labn)
lab()
def prereq():
course_list=[]
py=pn=0
i=0
while i<len(Dataset):
s=str(Dataset[i][10])
s=s.lower()
if(s=='no' or s=='-'):
pn+=1
else:
py+=1
if(s not in course_list):
course_list.append(Dataset[i][3])
i+=1
print("Precourses list\n")
print(course_list,"\n precourse :",py,"\n No precourses required",pn)
prereq()
suggest()"""