forked from ultralytics/yolov5
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtracker.py
126 lines (106 loc) · 4.62 KB
/
tracker.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import argparse
import numpy as np
import torch
import yolov5
from typing import Union, List, Optional
import norfair
from norfair import Detection, Tracker, Video, Paths
max_distance_between_points: int = 60
class YOLO:
def __init__(self, model_path: str, device: Optional[str] = None):
if device is not None and "cuda" in device and not torch.cuda.is_available():
raise Exception(
"Selected device='cuda', but cuda is not available to Pytorch."
)
# automatically set device if its None
elif device is None:
device = "cuda:0" if torch.cuda.is_available() else "cpu"
# load model
self.model = yolov5.load(model_path, device=device)
def __call__(
self,
img: Union[str, np.ndarray],
conf_threshold: float = 0.25,
iou_threshold: float = 0.45,
image_size: int = 720,
classes: Optional[List[int]] = None
) -> torch.tensor:
self.model.conf = conf_threshold
self.model.iou = iou_threshold
if classes is not None:
self.model.classes = classes
detections = self.model(img, size=image_size)
return detections
def euclidean_distance(detection, tracked_object):
return np.linalg.norm(detection.points - tracked_object.estimate)
def center(points):
return [np.mean(np.array(points), axis=0)]
def yolo_detections_to_norfair_detections(
yolo_detections: torch.tensor,
track_points: str = 'centroid' # bbox or centroid
) -> List[Detection]:
"""convert detections_as_xywh to norfair detections
"""
norfair_detections: List[Detection] = []
if track_points == 'centroid':
detections_as_xywh = yolo_detections.xywh[0]
for detection_as_xywh in detections_as_xywh:
centroid = np.array(
[
detection_as_xywh[0].item(),
detection_as_xywh[1].item()
]
)
scores = np.array([detection_as_xywh[4].item()])
norfair_detections.append(
Detection(points=centroid, scores=scores)
)
elif track_points == 'bbox':
detections_as_xyxy = yolo_detections.xyxy[0]
for detection_as_xyxy in detections_as_xyxy:
bbox = np.array(
[
[detection_as_xyxy[0].item(), detection_as_xyxy[1].item()],
[detection_as_xyxy[2].item(), detection_as_xyxy[3].item()]
]
)
scores = np.array([detection_as_xyxy[4].item(), detection_as_xyxy[4].item()])
norfair_detections.append(
Detection(points=bbox, scores=scores)
)
return norfair_detections
parser = argparse.ArgumentParser(description="Track objects in a video.")
parser.add_argument("files", type=str, nargs="+", help="Video files to process")
parser.add_argument("--detector_path", type=str, default="yolov5m6.pt", help="YOLOv5 model path")
parser.add_argument("--img_size", type=int, default="720", help="YOLOv5 inference size (pixels)")
parser.add_argument("--conf_thres", type=float, default="0.25", help="YOLOv5 object confidence threshold")
parser.add_argument("--iou_thresh", type=float, default="0.45", help="YOLOv5 IOU threshold for NMS")
parser.add_argument('--classes', nargs='+', type=int, help='Filter by class: --classes 0, or --classes 0 2 3')
parser.add_argument("--device", type=str, default=None, help="Inference device: 'cpu' or 'cuda'")
parser.add_argument("--track_points", type=str, default="centroid", help="Track points: 'centroid' or 'bbox'")
args = parser.parse_args()
model = YOLO(args.detector_path, device=args.device)
for input_path in args.files:
video = Video(input_path=input_path)
tracker = Tracker(
distance_function=euclidean_distance,
distance_threshold=max_distance_between_points,
)
paths_drawer = Paths(center, attenuation=0.01)
for frame in video:
yolo_detections = model(
frame,
conf_threshold=args.conf_thres,
iou_threshold=args.iou_thresh,
image_size=args.img_size,
classes=args.classes
)
detections = yolo_detections_to_norfair_detections(yolo_detections, track_points=args.track_points)
tracked_objects = tracker.update(detections=detections)
if args.track_points == 'centroid':
norfair.draw_points(frame, detections)
elif args.track_points == 'bbox':
norfair.draw_boxes(frame, detections)
norfair.draw_tracked_objects(frame, tracked_objects)
frame = paths_drawer.draw(frame, tracked_objects)
video.write(frame)