-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrt_inference.py
executable file
·212 lines (161 loc) · 7.23 KB
/
trt_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
# Copyright 2020, Visual Computing Group at HTW. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ==============================================================================
import abc
import time
import numpy as np
import tensorrt as trt
import pycuda.driver as cuda
from pycuda.autoinit import context as cuda_context
class MemoryBinding(object):
"""
This class is just a data class
"""
def __init__(self, name, shape, dtype, host_mem, device_mem, is_input):
self.name = name
self.shape = shape
self.dtype = dtype
self.host = host_mem
self.device = device_mem
self.binding_id = int(device_mem)
self.is_input = is_input
def __str__(self):
return "Binding of " + self.name + "\nShape:" + str(self.shape) + "\nHost:" + \
str(self.host) + "\nDevice:" + str(self.device) + "\nIsInput:" + str(self.is_input)
def __repr__(self):
return self.__str__()
def copyTo(self, data):
"""
Copy data to separated host memory
:param data: np.ndarray
"""
if data.shape[1:] != self.shape[1:]:
raise Exception("Shape of array " + str(data.shape[1:]) + " is not equal to the shape of input " + self.name + " " + str(self.shape[1:]))
if data.shape[0] > self.shape[0]:
raise Exception("Batch size of of data array " + str(data.shape[1]) + " is higher than max batch size of input " + self.name + " " + str(self.shape[1]))
# copy all or only parts of it
if data.shape[0] == self.shape[0]:
np.copyto(self.host, data.ravel())
else:
data_ravel = data.ravel()
self.host[:data_ravel.shape[0]] = data_ravel
class TRTInference(object):
"""
Similar to
https://github.com/onnx/onnx-tensorrt/blob/6.0-full-dims/ModelImporter.cpp#L457
https://github.com/onnx/onnx-tensorrt/blob/ba53ee59da21af3096e38721327c74ec689f0f07/ModelImporter.cpp#L455
"""
__metaclass__ = abc.ABCMeta
def __init__(self, serialized_engine, trt_logger_severity=trt.Logger.INFO):
"""
:param trt_logger_severity:
"""
start = time.time()
# make sure the right cuda context is used for the next instructions
cuda_context.push()
self._TRT_LOGGER = trt.Logger(trt_logger_severity)
trt.init_libnvinfer_plugins(self._TRT_LOGGER, "")
print('Plugin after: {:.0f} [msec]'.format((time.time() - start) * 1000))
self._runtime = trt.Runtime(self._TRT_LOGGER)
print('Runtime after: {:.0f} [msec]'.format((time.time() - start) * 1000))
self._trt_engine = self._runtime.deserialize_cuda_engine(serialized_engine)
print('Deserialize Cuda engine after: {:.0f} [msec]'.format((time.time() - start) * 1000))
self._context = self._trt_engine.create_execution_context()
print('Create execution context after: {:.0f} [msec]'.format((time.time() - start) * 1000))
self._setup_bindings(self._trt_engine)
print('Setup bindings after: {:.0f} [msec]'.format((time.time() - start) * 1000))
# pop the context from the top of the context stack
cuda_context.pop()
print("Max batch size", self._trt_engine.max_batch_size)
print("All shapes are known", self._context.all_shape_inputs_specified)
print("All dynamic shapes are known", self._context.all_binding_shapes_specified)
def __enter__(self):
return self
def __del__(self):
self._delete_bindings()
self._context.__del__()
self._trt_engine.__del__()
self._runtime.__del__()
cuda_context.detach()
def __exit__(self, exc_type, exc_value, exc_traceback):
self.__del__()
return True
def _delete_bindings(self):
for mem in self._inputs.values():
mem.device.free()
for mem in self._outputs:
mem.device.free()
def _setup_bindings(self, engine):
"""
:param engine:
"""
self._inputs = {}
self._outputs = []
self._stream = cuda.Stream()
for binding in engine:
name = binding
shape = engine.get_binding_shape(binding)
shape[0] = engine.max_batch_size
dtype = trt.nptype(engine.get_binding_dtype(binding))
size = trt.volume(shape)
# Allocate host and device buffers
# https://documen.tician.de/pycuda/util.html
host_mem = cuda.pagelocked_empty(size, dtype)
device_mem = cuda.mem_alloc(host_mem.nbytes)
# Append to the appropriate list.
if engine.binding_is_input(binding):
self._inputs[name] = MemoryBinding(name, shape, dtype, host_mem, device_mem, True)
else:
self._outputs.append(MemoryBinding(name, shape, dtype, host_mem, device_mem, False))
def get_max_batch_size(self):
"""
The max batch sizes this engine was optimized for.
"""
return self._trt_engine.max_batch_size
def get_input_bindings(self):
return self._inputs
def get_output_bindings(self):
return self._outputs
def run(self, feed_dict, batch_size=1):
"""
The inference computes and returns only the amount of data defined by the batch size parameter.
Smaller batch sizes perform faster. There is a limit imposed by the TRT engine, see get_max_batch_size().
:param feed_dict: dict<string, np.ndarray>
:param batch_size:
:return:
"""
cuda_context.push()
bindings = []
for input_name, np_array in feed_dict.items():
mem = self._inputs[input_name]
mem.copyTo(np_array)
# Transfer input data to the GPU.
cuda.memcpy_htod(mem.device, mem.host)
bindings.append(mem.binding_id)
for mem in self._outputs:
bindings.append(mem.binding_id)
if self._context.execute(batch_size=batch_size, bindings=bindings) is False:
raise Exception("Execution of inference failed, please check the console for error logs.")
output_dict = {}
for mem in self._outputs:
# Transfer predictions back from the GPU.
cuda.memcpy_dtoh(mem.host, mem.device)
# Copy to numpy
output = np.copy(mem.host)
output = output.reshape(mem.shape)
if batch_size < output.shape[0]:
output = output[:batch_size]
output_dict[mem.name] = output
cuda_context.pop()
return output_dict