-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathCNN Image Classification 2.py
85 lines (70 loc) · 2.57 KB
/
CNN Image Classification 2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
# James Marcogliese - 501089745, Yuri Zmytrakov - 501074085
# Constants
IMAGE_WIDTH=150
IMAGE_HEIGHT=150
IMAGE_SIZE=(IMAGE_WIDTH, IMAGE_HEIGHT)
IMAGE_CHANNELS=3 # RGB
BATCH_SIZE=20
EPOCHS=5
import numpy as np
import pandas as pd
from keras.preprocessing.image import ImageDataGenerator
import matplotlib.pyplot as plt
import os
import zipfile
cwd = os.getcwd()
zipped_file_location = cwd = os.getcwd() + "\\cats_dogs 2.zip"
unzipped_file_location = os.getcwd() + "\\cats_dogs 2"
if not os.path.isdir(unzipped_file_location):
# Extract ZIP
with zipfile.ZipFile(zipped_file_location, 'r') as zip_ref:
zip_ref.extractall(unzipped_file_location)
train_datagen = ImageDataGenerator(rescale=1./255)
test_datagen = ImageDataGenerator(rescale=1./255)
train_generator = train_datagen.flow_from_directory(
unzipped_file_location + "\\cats_dogs\\train",
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary',
color_mode='rgb') # 3 channel
test_generator = test_datagen.flow_from_directory(
unzipped_file_location + "\\cats_dogs\\test",
target_size=IMAGE_SIZE,
batch_size=BATCH_SIZE,
class_mode='binary')
from keras.models import Sequential
from keras.optimizers import rmsprop_v2
from keras.layers import Conv2D, MaxPooling2D, Dropout, Flatten, Dense, Activation, BatchNormalization
model = Sequential()
model.add(Conv2D(32, (3, 3), activation='relu', input_shape=(IMAGE_WIDTH, IMAGE_HEIGHT, IMAGE_CHANNELS)))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(64, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Conv2D(128, (3, 3), activation='relu'))
model.add(MaxPooling2D(pool_size=(2, 2)))
model.add(Flatten())
model.add(Dense(512, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
model.compile(loss='binary_crossentropy', optimizer=rmsprop_v2.RMSprop(lr=1e-4), metrics=['acc'])
print(model.summary())
history = model.fit(
train_generator,
epochs=EPOCHS,
)
acc = history.history['acc']
loss = history.history['loss']
epochs = range(1, len(acc) + 1)
plt.plot(epochs, acc, 'bo', label='Training acc')
plt.title('Training and validation accuracy')
plt.legend()
plt.figure()
plt.plot(epochs, loss, 'bo', label='Training loss')
plt.title('Training and validation loss')
plt.legend()
plt.show()
test_loss, test_acc = model.evaluate(
test_generator
)
print("Test loss:" + str(test_loss) + ". Test accuracy:" + str(test_acc))