-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
523 lines (451 loc) · 20.1 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
from __future__ import division
import os
import argparse
import time
import math
import random
from copy import deepcopy
import torch
import torch.optim as optim
import torch.backends.cudnn as cudnn
import torch.distributed as dist
from torch.nn.parallel import DistributedDataParallel as DDP
from config.yolo_config import yolo_config
from data.voc import VOCDetection
from data.coco import COCODataset
from data.transforms import TrainTransforms, ColorTransforms, ValTransforms
from utils import distributed_utils
from utils import create_labels
from utils.vis import vis_data, vis_targets
from utils.com_flops_params import FLOPs_and_Params
from utils.criterion import build_criterion
from utils.misc import detection_collate
from utils.misc import ModelEMA
from utils.criterion import build_criterion
from models.yolo import build_model
from evaluator.cocoapi_evaluator import COCOAPIEvaluator
from evaluator.vocapi_evaluator import VOCAPIEvaluator
def parse_args():
parser = argparse.ArgumentParser(description='YOLO Detection')
# basic
parser.add_argument('--cuda', action='store_true', default=True,
help='use cuda.')
parser.add_argument('--batch_size', default=16, type=int,
help='Batch size for training')
parser.add_argument('--lr', default=1e-3, type=float,
help='initial learning rate')
parser.add_argument('--img_size', type=int, default=416,
help='The upper bound of warm-up')
parser.add_argument('--multi_scale_range', nargs='+', default=[10, 20], type=int,
help='lr epoch to decay')
parser.add_argument('--max_epoch', type=int, default=1,
help='The upper bound of warm-up')
parser.add_argument('--lr_epoch', nargs='+', default=[100, 150], type=int,
help='lr epoch to decay')
parser.add_argument('--wp_epoch', type=int, default=2,
help='The upper bound of warm-up')
parser.add_argument('--start_epoch', type=int, default=0,
help='start epoch to train')
parser.add_argument('-r', '--resume', default=None, type=str,
help='keep training')
parser.add_argument('--num_workers', default=8, type=int,
help='Number of workers used in dataloading')
parser.add_argument('--num_gpu', default=1, type=int,
help='Number of GPUs to train')
parser.add_argument('--eval_epoch', type=int,
default=10, help='interval between evaluations')
parser.add_argument('--tfboard', action='store_true', default=True,
help='use tensorboard')
parser.add_argument('--save_folder', default='weights/', type=str,
help='path to save weight')
parser.add_argument('--vis_data', action='store_true', default=False,
help='visualize images and labels.')
parser.add_argument('--vis_targets', action='store_true', default=False,
help='visualize assignment.')
# Optimizer & Schedule
parser.add_argument('--optimizer', default='sgd', type=str,
help='sgd, adamw')
parser.add_argument('--lr_schedule', default='step', type=str,
help='step, cos')
parser.add_argument('--grad_clip', default=None, type=float,
help='clip gradient')
# model
parser.add_argument('-m', '--model', default='yolov2',
help='yolov1, yolov2, yolov3, yolov3_spp, yolov3_de, '
'yolov4, yolo_tiny, yolo_nano')
parser.add_argument('--conf_thresh', default=0.001, type=float,
help='NMS threshold')
parser.add_argument('--nms_thresh', default=0.6, type=float,
help='NMS threshold')
# dataset
parser.add_argument('--root', default='.\data',
help='data root')
parser.add_argument('-d', '--dataset', default='voc',
help='coco, widerface, crowdhuman')
# Loss
parser.add_argument('--loss_obj_weight', default=1.0, type=float,
help='weight of obj loss')
parser.add_argument('--loss_cls_weight', default=1.0, type=float,
help='weight of cls loss')
parser.add_argument('--loss_reg_weight', default=1.0, type=float,
help='weight of reg loss')
parser.add_argument('--scale_loss', default='batch', type=str,
help='scale loss: batch or positive samples')
# train trick
parser.add_argument('--no_warmup', action='store_true', default=False,
help='do not use warmup')
parser.add_argument('-ms', '--multi_scale', action='store_true', default=False,
help='use multi-scale trick')
parser.add_argument('--ema', action='store_true', default=False,
help='use ema training trick')
parser.add_argument('--mosaic', action='store_true', default=False,
help='use Mosaic Augmentation trick')
parser.add_argument('--mixup', action='store_true', default=False,
help='use MixUp Augmentation trick')
parser.add_argument('--multi_anchor', action='store_true', default=False,
help='use multiple anchor boxes as the positive samples')
parser.add_argument('--center_sample', action='store_true', default=False,
help='use center sample for labels')
parser.add_argument('--accumulate', type=int, default=1,
help='accumulate gradient')
# DDP train
parser.add_argument('-dist', '--distributed', action='store_true', default=False,
help='distributed training')
parser.add_argument('--local_rank', type=int, default=0,
help='local_rank')
parser.add_argument('--sybn', action='store_true', default=False,
help='use sybn.')
return parser.parse_args()
def train():
args = parse_args()
print("Setting Arguments.. : ", args)
print("----------------------------------------------------------")
# path to save model
path_to_save = os.path.join(args.save_folder, args.dataset, args.model)
os.makedirs(path_to_save, exist_ok=True)
# set distributed
local_rank = 0
if args.distributed:
dist.init_process_group(backend="nccl", init_method="env://")
local_rank = torch.distributed.get_rank()
print(local_rank)
torch.cuda.set_device(local_rank)
# cuda
if args.cuda:
print('use cuda')
cudnn.benchmark = True
device = torch.device("cuda")
else:
device = torch.device("cpu")
# YOLO config
cfg = yolo_config[args.model]
train_size = val_size = args.img_size
# dataset and evaluator
dataset, evaluator, num_classes = build_dataset(args, train_size, val_size, device)
# dataloader
dataloader = build_dataloader(args, dataset, detection_collate)
# criterioin
criterion = build_criterion(args, cfg, num_classes)
print('Training model on:', args.dataset)
print('The dataset size:', len(dataset))
print("----------------------------------------------------------")
# build model
net = build_model(args=args,
cfg=cfg,
device=device,
num_classes=num_classes,
trainable=True)
model = net
# SyncBatchNorm
if args.sybn and args.cuda and args.num_gpu > 1:
print('use SyncBatchNorm ...')
model = torch.nn.SyncBatchNorm.convert_sync_batchnorm(model)
model = model.to(device).train()
checkpoint = torch.load('./weights/yolov2_36.4_56.6.pth', map_location='cpu')
del_keys = ["neck.projector.0.convs.0.weight", "cls_pred.weight",
"cls_pred.bias", ]
for k in del_keys:
del checkpoint[k]
model.load_state_dict(checkpoint, strict=False)
# compute FLOPs and Params
if local_rank == 0:
model_copy = deepcopy(model)
model_copy.trainable = False
model_copy.eval()
FLOPs_and_Params(model=model_copy, size=train_size)
model_copy.trainable = True
model_copy.train()
# DDP
if args.distributed and args.num_gpu > 1:
print('using DDP ...')
model = DDP(model, device_ids=[local_rank], output_device=local_rank)
# keep training
if args.resume is not None:
print('keep training model: %s' % (args.resume))
model.load_state_dict(torch.load(args.resume, map_location=device))
# EMA
ema = ModelEMA(model) if args.ema else None
# use tfboard
tblogger = None
if args.tfboard:
print('use tensorboard')
from torch.utils.tensorboard import SummaryWriter
# c_time = time.strftime('%Y-%m-%d%H:%M:%S',time.localtime(time.time()))
log_path = os.path.join('log/', args.dataset)
os.makedirs(log_path, exist_ok=True)
tblogger = SummaryWriter(log_path)
# optimizer setup
base_lr = args.lr
tmp_lr = args.lr
if args.optimizer == 'sgd':
print('use SGD with momentum ...')
optimizer = optim.SGD(model.parameters(),
lr=tmp_lr,
momentum=0.9,
weight_decay=5e-4)
elif args.optimizer == 'adamw':
print('use AdamW ...')
optimizer = optim.AdamW(model.parameters(),
lr=tmp_lr,
weight_decay=5e-4)
batch_size = args.batch_size
epoch_size = len(dataset) // (batch_size * args.num_gpu)
best_map = -100.
warmup = not args.no_warmup
t0 = time.time()
# start training loop
for epoch in range(args.start_epoch, args.max_epoch):
t_start_one_epoch=time.time()
if args.distributed:
dataloader.sampler.set_epoch(epoch)
# use step lr decay
if args.lr_schedule == 'step':
if epoch in args.lr_epoch:
tmp_lr = tmp_lr * 0.1
set_lr(optimizer, tmp_lr)
# use cos lr decay
elif args.lr_schedule == 'cos' and not warmup:
T_max = args.max_epoch - 15
lr_min = base_lr * 0.1 * 0.1
if epoch > T_max:
# Cos decay is done
print('Cosine annealing is over !!')
args.lr_schedule == None
tmp_lr = lr_min
set_lr(optimizer, tmp_lr)
else:
tmp_lr = lr_min + 0.5*(base_lr - lr_min)*(1 + math.cos(math.pi*epoch / T_max))
set_lr(optimizer, tmp_lr)
# train one epoch
for iter_i, (images, targets) in enumerate(dataloader):
ni = iter_i + epoch * epoch_size
# warmup
if epoch < args.wp_epoch and warmup:
nw = args.wp_epoch * epoch_size
tmp_lr = base_lr * pow(ni / nw, 4)
set_lr(optimizer, tmp_lr)
elif epoch == args.wp_epoch and iter_i == 0 and warmup:
# warmup is over
print('Warmup is over !!')
warmup = False
tmp_lr = base_lr
set_lr(optimizer, tmp_lr)
# multi-scale trick
if iter_i % 10 == 0 and iter_i > 0 and args.multi_scale:
# randomly choose a new size
r = args.multi_scale_range
train_size = random.randint(r[0], r[1]) * 32
model.set_grid(train_size)
if args.multi_scale:
# interpolate
images = torch.nn.functional.interpolate(
input=images,
size=train_size,
mode='bilinear',
align_corners=False)
targets = [label.tolist() for label in targets]
# visualize target
if args.vis_data:
vis_data(images, targets)
continue
# make labels
targets = create_labels.gt_creator(
img_size=train_size,
strides=net.stride,
label_lists=targets,
anchor_size=cfg["anchor_size"],
multi_anchor=args.multi_anchor,
center_sample=args.center_sample)
# visualize assignment
if args.vis_targets:
vis_targets(images, targets, cfg["anchor_size"], net.stride)
continue
# to device
images = images.to(device)
targets = targets.to(device)
# inference
pred_obj, pred_cls, pred_iou, targets = model(images, targets=targets)
# compute loss
loss_obj, loss_cls, loss_reg, total_loss = criterion(pred_obj, pred_cls, pred_iou, targets)
# check loss
if torch.isnan(total_loss):
continue
loss_dict = dict(
loss_obj=loss_obj,
loss_cls=loss_cls,
loss_reg=loss_reg,
total_loss=total_loss
)
loss_dict_reduced = distributed_utils.reduce_loss_dict(loss_dict)
total_loss = total_loss / args.accumulate
# Backward and Optimize
total_loss.backward()
if ni % args.accumulate == 0:
if args.grad_clip is not None:
torch.nn.utils.clip_grad_norm_(model.parameters(), args.grad_clip)
optimizer.step()
optimizer.zero_grad()
# ema
if args.ema:
ema.update(model)
# display
if iter_i % 10 == 0:
if args.tfboard:
# viz loss
tblogger.add_scalar('loss obj', loss_dict_reduced['loss_obj'].item(), ni)
tblogger.add_scalar('loss cls', loss_dict_reduced['loss_cls'].item(), ni)
tblogger.add_scalar('loss reg', loss_dict_reduced['loss_reg'].item(), ni)
t1 = time.time()
print('[Epoch %d/%d][Iter %d/%d][lr %.6f][Loss: obj %.2f || cls %.2f || reg %.2f || size %d || time: %.2f]'
% (epoch+1,
args.max_epoch,
iter_i,
epoch_size,
tmp_lr,
loss_dict['loss_obj'].item(),
loss_dict['loss_cls'].item(),
loss_dict['loss_reg'].item(),
train_size,
t1-t0),
flush=True)
t0 = time.time()
# evaluation
if (epoch + 1) % args.eval_epoch == 0 or (epoch + 1) == args.max_epoch:
if evaluator is None:
print('No evaluator ...')
print('Saving state, epoch:', epoch + 1)
torch.save(model_eval.state_dict(), os.path.join(path_to_save,
args.model + '_' + repr(epoch + 1) + '.pth'))
print('Keep training ...')
else:
print('eval ...')
# check ema
if args.ema:
model_eval = ema.ema
else:
model_eval = model.module if args.distributed else model
# set eval mode
model_eval.trainable = False
model_eval.set_grid(val_size)
model_eval.eval()
if local_rank == 0:
# evaluate
evaluator.evaluate(model_eval)
cur_map = evaluator.map
if cur_map > best_map:
# update best-map
best_map = cur_map
# save model
print('Saving state, epoch:', epoch + 1)
torch.save(model_eval.state_dict(), os.path.join(path_to_save,
args.model + '_' + repr(epoch + 1) + '_' + str(round(best_map*100, 2)) + '.pth'))
if args.tfboard:
if args.dataset == 'voc':
tblogger.add_scalar('07test/mAP', evaluator.map, epoch)
elif args.dataset == 'coco':
tblogger.add_scalar('val/AP50_95', evaluator.ap50_95, epoch)
tblogger.add_scalar('val/AP50', evaluator.ap50, epoch)
if args.distributed:
# wait for all processes to synchronize
dist.barrier()
# set train mode.
model_eval.trainable = True
model_eval.set_grid(train_size)
model_eval.train()
# close mosaic augmentation
if args.mosaic and args.max_epoch - epoch == 15:
print('close Mosaic Augmentation ...')
dataloader.dataset.mosaic = False
# close mixup augmentation
if args.mixup and args.max_epoch - epoch == 15:
print('close Mixup Augmentation ...')
dataloader.dataset.mixup = False
t_end_one_epoch = time.time()
print("Epoch:%d total time: %d " % (epoch+1,t_end_one_epoch-t_start_one_epoch) )
if args.tfboard:
tblogger.close()
def build_dataset(args, train_size, val_size, device):
if args.dataset == 'voc':
data_dir = os.path.join(args.root, 'VOCdevkit')
num_classes = 20
dataset = VOCDetection(
data_dir=data_dir,
img_size=train_size,
transform=TrainTransforms(train_size),
color_augment=ColorTransforms(train_size),
mosaic=args.mosaic,
mixup=args.mixup)
evaluator = VOCAPIEvaluator(
data_dir=data_dir,
img_size=val_size,
device=device,
transform=ValTransforms(val_size))
elif args.dataset == 'coco':
data_dir = os.path.join(args.root, 'COCO')
num_classes = 80
dataset = COCODataset(
data_dir=data_dir,
img_size=train_size,
image_set='train2017',
transform=TrainTransforms(train_size),
color_augment=ColorTransforms(train_size),
mosaic=args.mosaic,
mixup=args.mixup)
evaluator = COCOAPIEvaluator(
data_dir=data_dir,
img_size=val_size,
device=device,
transform=ValTransforms(val_size)
)
else:
print('unknow dataset !! Only support voc and coco !!')
exit(0)
return dataset, evaluator, num_classes
def build_dataloader(args, dataset, collate_fn=None):
# distributed
if args.distributed and args.num_gpu > 1:
# dataloader
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
batch_size=args.batch_size,
collate_fn=collate_fn,
num_workers=args.num_workers,
pin_memory=True,
sampler=torch.utils.data.distributed.DistributedSampler(dataset)
)
else:
# dataloader
dataloader = torch.utils.data.DataLoader(
dataset=dataset,
shuffle=True,
batch_size=args.batch_size,
collate_fn=collate_fn,
num_workers=args.num_workers,
pin_memory=True
)
return dataloader
def set_lr(optimizer, lr):
for param_group in optimizer.param_groups:
param_group['lr'] = lr
if __name__ == '__main__':
train()