-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathevaluate.py
452 lines (395 loc) · 20.2 KB
/
evaluate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
import argparse
import os
import torch
import yaml
import torch.nn as nn
from torch.utils.data import DataLoader
from utils.model import get_model, get_vocoder
from utils.tools import to_device, log, synth_one_sample, synth_multi_samples
from model import Speaker2Dubber_Loss
from dataset import Dataset, PretrainDataset
import numpy as np
from scipy.io.wavfile import write
from tqdm import tqdm
import sys
sys.path.append("..")
from resemblyzer import preprocess_wav
from mcd import Calculate_MCD
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def acc_metric(speakers_ids, speakers_all, wav_reconstructions_utterance_embeds, \
wav_predictions_utterance_embeds, ids2loc_map, loc2ids_map, centroids=None):
if centroids is None:
# Inclusive centroids (1 per speaker) (speaker_num x embed_size)
centroids_rec = np.zeros((len(speakers_ids), wav_reconstructions_utterance_embeds.shape[1]), dtype=np.float)
# calculate the centroids for each speaker
counters = np.zeros((len(speakers_ids),))
for i in range(wav_reconstructions_utterance_embeds.shape[0]):
# calculate centroids
centroids_rec[ids2loc_map[speakers_all[i].item()]] += wav_reconstructions_utterance_embeds[i]
counters[ids2loc_map[speakers_all[i].item()]] += 1
# normalize
for i in range(len(counters)):
centroids_rec[i] = centroids_rec[i] / counters[i]
centroids_rec[i] = centroids_rec[i] / (np.linalg.norm(centroids_rec[i], ord=2) + 1e-5)
# for i in range(len(wav_reconstructions_utterance_embeds)):
# wav_reconstructions_utterance_embeds[i] = wav_reconstructions_utterance_embeds[i] / \
# (np.linalg.norm(wav_reconstructions_utterance_embeds[i], ord=2) + 1e-5)
# wav_predictions_utterance_embeds[i] = wav_predictions_utterance_embeds[i] / \
# (np.linalg.norm(wav_predictions_utterance_embeds[i], ord=2) + 1e-5)
else:
centroids_rec = centroids
# similarity matrix: wav_pred 512x256; centroids: num_speaker(128)x256
# sim_matrix_pred = np.dot(wav_predictions_utterance_embeds, centroids_rec.T) \
# * encoder.similarity_weight.item() + encoder.similarity_bias.item()
# sim_matrix_rec = np.dot(wav_reconstructions_utterance_embeds, centroids_rec.T) \
# * encoder.similarity_weight.item() + encoder.similarity_bias.item()
sim_matrix_pred = np.dot(wav_predictions_utterance_embeds, centroids_rec.T)
sim_matrix_rec = np.dot(wav_reconstructions_utterance_embeds, centroids_rec.T)
# pred_locs 512x1
pred_locs = sim_matrix_pred.argmax(axis=1)
rec_locs = sim_matrix_rec.argmax(axis=1)
correct_num_pred = 0
correct_num_rec = 0
for i in range(len(pred_locs)):
if loc2ids_map[pred_locs[i]] == speakers_all[i].item():
correct_num_pred += 1
if loc2ids_map[rec_locs[i]] == speakers_all[i].item():
correct_num_rec += 1
#
eval_acc_pred = correct_num_pred / float(len(pred_locs))
eval_acc_rec = correct_num_rec / float(len(pred_locs))
return eval_acc_rec, eval_acc_pred
def calculate_acc(preprocess_config2, model_config, model, vocoder, \
encoder_spk, encoder_emo, loader, logger, sampling_rate=None, samples_path=None, \
mcd_box_plain=None, mcd_box_dtw=None, mcd_box_adv_dtw=None, useGT=False):
# Evaluation
quick_eval = True # evaluate only 32 samples if True, otherwise evaluate all data
counter_batch = 0
for batchs in tqdm(loader):
wav_reconstructions_batch = []
wav_predictions_batch = []
tags_batch = []
speakers_batch = []
emotions_batch = []
cofs_batch = []
counter_batch += 1
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(*(batch[2:]), useGT=useGT)
if logger is not None:
# synthesize multiple sample for speaker and emotion accuracy calculation
wav_reconstructions, wav_predictions, tags, speakers, emotions, cofs = synth_multi_samples(
batch,
output,
vocoder,
model_config,
preprocess_config2,
)
# merge
wav_reconstructions_batch.extend(wav_reconstructions)
wav_predictions_batch.extend(wav_predictions)
tags_batch.extend(tags)
speakers_batch.extend(speakers)
emotions_batch.extend(emotions)
cofs_batch.extend(cofs)
# calculate metrics
acc_means_spk, acc_means_emo, avg_mcd = assess_spk_emo(
encoder_spk=encoder_spk, encoder_emo=encoder_emo, sampling_rate=sampling_rate, samples_path=samples_path,
mcd_box_plain=mcd_box_plain, mcd_box_dtw=mcd_box_dtw, mcd_box_adv_dtw=mcd_box_adv_dtw,
wav_reconstructions_batch=wav_reconstructions_batch, wav_predictions_batch=wav_predictions_batch,
tags_batch=tags_batch, speakers_batch=speakers_batch, emotions_batch=emotions_batch, cofs_batch=cofs_batch)
if counter_batch == 1:
acc_sums_spk = acc_means_spk
acc_sums_emo = acc_means_emo
sum_mcd = avg_mcd
else:
acc_sums_spk = list(map(lambda x: x[0] + x[1], zip(acc_sums_spk, acc_means_spk)))
acc_sums_emo = list(map(lambda x: x[0] + x[1], zip(acc_sums_emo, acc_means_emo)))
sum_mcd = list(map(lambda x: x[0] + x[1], zip(sum_mcd, avg_mcd)))
"""
V2C-Net's quick_eval setting (from chenqi et.al ). If you wanna test all data, please delete the following code.
"""
if counter_batch == 5:
break
acc_sums_spk = list(np.array(acc_sums_spk) / counter_batch)
acc_sums_emo = list(np.array(acc_sums_emo) / counter_batch)
sum_mcd = list(np.array(sum_mcd) / counter_batch)
return batch, output, acc_sums_spk, acc_sums_emo, sum_mcd
def assess_spk_emo(encoder_spk, encoder_emo, sampling_rate, samples_path,
mcd_box_plain, mcd_box_dtw, mcd_box_adv_dtw,
wav_reconstructions_batch, wav_predictions_batch, tags_batch, speakers_batch, emotions_batch,
cofs_batch):
# how many speaker in here (value equal to the speaker id)
speakers_ids = torch.unique(torch.tensor(speakers_batch, dtype=torch.long))
emotions_ids = torch.unique(torch.tensor(emotions_batch, dtype=torch.long))
# speakers mapping
ids2loc_map = {}
loc2ids_map = {}
for i in range(len(speakers_ids)):
ids2loc_map[speakers_ids[i].item()] = i
loc2ids_map[i] = speakers_ids[i].item()
# emotion mapping
ids2loc_map_emo = {}
loc2ids_map_emo = {}
for i in range(len(emotions_ids)):
ids2loc_map_emo[emotions_ids[i].item()] = i
loc2ids_map_emo[i] = emotions_ids[i].item()
# save and reload val (train) samples
# save
rec_fpaths = []
pred_fpaths = []
for i in range(len(wav_reconstructions_batch)):
rec_fpath = os.path.join(samples_path, "wav_rec_{}.wav".format(tags_batch[i]))
pred_fpath = os.path.join(samples_path, "wav_pred_{}.wav".format(tags_batch[i]))
write(rec_fpath, sampling_rate, wav_reconstructions_batch[i])
write(pred_fpath, sampling_rate, wav_predictions_batch[i])
rec_fpaths.append(rec_fpath)
pred_fpaths.append(pred_fpath)
# reload
print("Reloading ...")
rec_wavs = np.array(list(map(preprocess_wav, tqdm(rec_fpaths, "Preprocessing rec wavs", len(rec_fpaths)))))
pred_wavs = np.array(list(map(preprocess_wav, tqdm(pred_fpaths, "Preprocessing pred wavs", len(pred_fpaths)))))
# mcd
print("calculate MCD ...")
for i in tqdm(range(len(rec_fpaths))):
if i != (len(rec_fpaths) - 1):
mcd_box_plain.calculate_mcd(rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), average=False)
mcd_box_dtw.calculate_mcd(rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), average=False)
mcd_box_adv_dtw.calculate_mcd(rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), cofs_batch[i], average=False)
else:
avg_mcd_plain = mcd_box_plain.calculate_mcd(
rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), average=True)
avg_mcd_dtw = mcd_box_dtw.calculate_mcd(
rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), average=True)
avg_mcd_adv_dtw = mcd_box_adv_dtw.calculate_mcd(
rec_fpaths[i], pred_fpaths[i], len(rec_fpaths), cofs_batch[i], average=True)
# speaker and emotion: (speakers/emttion_per_batch x utterances_per_se) x embedding_dim
# Compute the wav embedding for accuracy (spk)
wav_reconstructions_utterance_embeds_spk = np.array(list(map(encoder_spk.embed_utterance, rec_wavs)))
wav_predictions_utterance_embeds_spk = np.array(list(map(encoder_spk.embed_utterance, pred_wavs)))
# Compute the wav embedding for accuracy (emo)
wav_reconstructions_utterance_embeds_emo = np.array(list(map(encoder_emo.embed_utterance, rec_wavs)))
wav_predictions_utterance_embeds_emo = np.array(list(map(encoder_emo.embed_utterance, pred_wavs)))
# calcuate accuracy
# emotion
# centroids_emo = np.load("/mnt/cephfs/home/chenqi/workspace/Project/Resemblyzer/centroids_emo_all.npy")
# centroids_emo = np.load("/home/qichen/Desktop/Avatar2/V2C/centroids_emo_all.npy")
eval_acc_rec_emo, eval_acc_pred_emo = acc_metric(emotions_ids, emotions_batch, \
wav_reconstructions_utterance_embeds_emo,
wav_predictions_utterance_embeds_emo, \
ids2loc_map_emo, loc2ids_map_emo, centroids=None)
# speaker
eval_acc_rec_spk, eval_acc_pred_spk = acc_metric(speakers_ids, speakers_batch, \
wav_reconstructions_utterance_embeds_spk,
wav_predictions_utterance_embeds_spk, \
ids2loc_map, loc2ids_map)
acc_means_spk = [eval_acc_rec_spk, eval_acc_pred_spk]
acc_means_emo = [eval_acc_rec_emo, eval_acc_pred_emo]
avg_mcd = [avg_mcd_plain, avg_mcd_dtw, avg_mcd_adv_dtw]
return acc_means_spk, acc_means_emo, avg_mcd
def evaluate(model, step, configs, logger=None, vocoder=None, encoder_spk=None, \
encoder_emo=None, train_samples_path=None, val_samples_path=None, useGT=False):
# preprocess_config, model_config, train_config = configs
preprocess_config2, model_config, train_config = configs
# Get dataset
dataset_train = Dataset(
"train.txt", preprocess_config2, train_config, sort=False, drop_last=False, diff_audio=True
)
dataset_val = Dataset(
"val.txt", preprocess_config2, train_config, sort=False, drop_last=False, diff_audio=True
)
#
loader_train = DataLoader(
dataset_train,
batch_size=16,
shuffle=True,
collate_fn=dataset_train.collate_fn,
)
loader_train_acconly = DataLoader(
dataset_train,
batch_size=16,
shuffle=False,
collate_fn=dataset_train.collate_fn,
)
loader_val = DataLoader(
dataset_val,
batch_size=16,
shuffle=False,
collate_fn=dataset_val.collate_fn,
)
print("=============================")
print("dataset_train:", len(dataset_train))
print("loader_train:", len(loader_train))
print("dataset_val:", len(dataset_val))
print("loader_val:", len(loader_val))
# sampling_rate = preprocess_config["preprocessing"]["audio"]["sampling_rate"]
sampling_rate = preprocess_config2["preprocessing"]["audio"]["sampling_rate"]
batch_size = train_config["optimizer"]["batch_size"]
loss_model = model_config["loss_function"]["model"]
print("calculate training acc ...")
# initialize MCD module
mcd_box_plain = Calculate_MCD("plain", sr=sampling_rate)
mcd_box_dtw = Calculate_MCD("dtw", sr=sampling_rate)
mcd_box_adv_dtw = Calculate_MCD("adv_dtw", sr=sampling_rate)
#
_, _, acc_means_train_spk, acc_means_train_emo, avg_mcd_train = calculate_acc(preprocess_config2, model_config, \
model, vocoder, encoder_spk,
encoder_emo, loader_train_acconly,
logger, sampling_rate=sampling_rate,
samples_path=train_samples_path, \
mcd_box_plain=mcd_box_plain,
mcd_box_dtw=mcd_box_dtw,
mcd_box_adv_dtw=mcd_box_adv_dtw,
useGT=useGT)
print("calculate val loss and acc ...")
# initialize MCD module
mcd_box_plain = Calculate_MCD("plain", sr=sampling_rate)
mcd_box_dtw = Calculate_MCD("dtw", sr=sampling_rate)
mcd_box_adv_dtw = Calculate_MCD("adv_dtw", sr=sampling_rate)
#
batch, output, acc_means_val_spk, acc_means_val_emo, avg_mcd_val = calculate_acc(preprocess_config2, \
model_config, model, vocoder,
encoder_spk, encoder_emo,
loader_val, logger,
sampling_rate=sampling_rate,
samples_path=val_samples_path, \
mcd_box_plain=mcd_box_plain,
mcd_box_dtw=mcd_box_dtw,
mcd_box_adv_dtw=mcd_box_adv_dtw,
useGT=useGT)
message = "Validation Step {}, MCD plain|dtw|adv_dtw (train): {:.4f}|{:.4f}|{:.4f}, \
MCD plain|dtw|adv_dtw (val): {:.4f}|{:.4f}|{:.4f}, \
Id. Acc (train) (rec|pred): {:.4f}|{:.4f}, \
Id. Acc (val) (rec|pred): {:.4f}|{:.4f}, \
Emo. Acc (train) (rec|pred): {:.4f}|{:.4f}, \
Emo. Acc (val) (rec|pred): {:.4f}|{:.4f}".format(step,
avg_mcd_train[0], avg_mcd_train[1], avg_mcd_train[2], \
avg_mcd_val[0], avg_mcd_val[1], avg_mcd_val[2], \
acc_means_train_spk[0], acc_means_train_spk[1], \
acc_means_val_spk[0], acc_means_val_spk[1], \
acc_means_train_emo[0], acc_means_train_emo[1], \
acc_means_val_emo[0], acc_means_val_emo[1]
)
if logger is not None:
fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output,
vocoder,
model_config,
preprocess_config2,
)
log(logger, step, losses=None, accs_val_spk=acc_means_val_spk, \
accs_train_spk=acc_means_train_spk, accs_val_emo=acc_means_val_emo, \
accs_train_emo=acc_means_train_emo, avg_mcd_val=avg_mcd_val, \
avg_mcd_train=avg_mcd_train, LM=loss_model)
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
return message
def evaluate_v2(model, step, configs, logger=None, vocoder=None, Loss=None):
preprocess_config2, model_config, train_config = configs
# Get dataset
if model_config['train_mode'] == 'pretrain':
dataset = PretrainDataset(
"val.txt", preprocess_config2, train_config, sort=False, drop_last=False, diff_audio=True
)
else:
dataset = Dataset(
"val.txt", preprocess_config2, train_config, sort=False, drop_last=False, diff_audio=True
)
batch_size = train_config["optimizer"]["batch_size"]
loader = DataLoader(
dataset,
batch_size=batch_size,
shuffle=False,
collate_fn=dataset.collate_fn,
)
# Get loss function
# Loss = StyleSpeechLoss(preprocess_config, model_config).to(device)
# Evaluation
loss_sums = [0 for _ in range(15)]
for batchs in loader:
for batch in batchs:
batch = to_device(batch, device)
with torch.no_grad():
# Forward
output = model(*(batch[2:]), train_mode='pretrain')
# Cal Loss
losses = Loss(batch, output)
for i in range(len(losses)):
loss_sums[i] += losses[i].item() * len(batch[0])
loss_means = [loss_sum / len(dataset) for loss_sum in loss_sums]
message = "Validation Step {}: Total: {:.4f}, Mel_mae: {:.4f}, Mel_Post_mae: {:.4f}, Pitch MSE: {:.4f}, Energy MSE: {:.4f}, Pitch MAE: {:.4f}, Energy MAE: {:.4f}, Mel_mse: {:.4f}, Mel_Post_mse: {:.4f}, Emo_cross: {:.4f}, CTC_MDA_video: {:.4f}, CTC_MEL: {:.4f}, speaker_loss: {:.4f}, Duration_MSE: {:.4f}, Duration_MAE: {:.4f}".format(
step, *loss_means)
if logger is not None:
fig, wav_reconstruction, wav_prediction, tag = synth_one_sample(
batch,
output,
vocoder,
model_config,
preprocess_config2,
)
log(logger, step, losses=losses, LM=model_config['loss_function']['model'])
log(
logger,
fig=fig,
tag="Validation/step_{}_{}".format(step, tag),
)
sampling_rate = preprocess_config2["preprocessing"]["audio"]["sampling_rate"]
log(
logger,
audio=wav_reconstruction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_reconstructed".format(step, tag),
)
log(
logger,
audio=wav_prediction,
sampling_rate=sampling_rate,
tag="Validation/step_{}_{}_synthesized".format(step, tag),
)
return message
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--restore_step", type=int, default=0)
parser.add_argument(
"-p",
"--preprocess_config",
type=str,
required=True,
help="path to preprocess.yaml",
)
parser.add_argument(
"-m", "--model_config", type=str, required=True, help="path to model.yaml"
)
parser.add_argument(
"-t", "--train_config", type=str, required=True, help="path to train.yaml"
)
args = parser.parse_args()
# Read Config
preprocess_config = yaml.load(
open(args.preprocess_config, "r"), Loader=yaml.FullLoader
)
model_config = yaml.load(open(args.model_config, "r"), Loader=yaml.FullLoader)
train_config = yaml.load(open(args.train_config, "r"), Loader=yaml.FullLoader)
configs = (preprocess_config, model_config, train_config)
# Get model
model = get_model(args, configs, device, train=False).to(device)
message = evaluate(model, args.restore_step, configs)
print(message)