-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathload_dataset.py
336 lines (293 loc) · 12 KB
/
load_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
import json
import random
from mcd.mcd_utils_test import get_mcd_splits, get_fewshot_splits, get_div_splits
random.seed(2023) # control the randomness
def check_train(datum:dict, hold_combs:list) -> bool:
'''
return True: datum is supposed to be in train_set;
otherwise: datum is supposed to be held out;
'''
for i in range(len(hold_combs)):
flag = True
for key in hold_combs[i].keys():
if datum[key] != hold_combs[i][key]:
flag = False
if flag == False: # at least one attribute different
pass
else: # in this combination, all the attributes match
return False
return True
class ClsDataset():
'''
construct dataset(train // dev // test) for training and evaluating classifier.
'''
def __init__(self, file_path:str) -> None:
fr = open(file_path, "r")
if '.txt' not in file_path:
cls_data = json.load(fr)
else:
# for the last dataset
cls_data = list()
for line in fr.readlines():
line = line.rstrip('\n')
line = line.split('----')
assert len(line) == 3 # review, sentiment, topic_cged
datum = dict()
datum["review"] = line[0]
datum["sentiment"] = line[1]
datum["topic_cged"] = line[2]
cls_data.append(datum)
random.shuffle(cls_data)
'''
[
{
'review':"...",
'attr_1':"...",
...
'attr_n':"..."
}
]
'''
length = len(cls_data)
# len(train) : len(test) : len(dev) = 7 : 1.5 : 1.5
self.train_data = cls_data[:int(0.7 * length)]
self.test_data = cls_data[int(0.7 * length) : int(0.85 * length)]
self.dev_data = cls_data[int(0.85 * length):]
class GenDataset():
'''
construct train_set for training generator
additionally return seen // unseen testing attribute combinations
'''
def __init__(self, file_path:str)->None:
fr = open(file_path, "r")
if '.txt' not in file_path:
self.gen_data = json.load(fr)
else:
# for the last dataset
self.gen_data = list()
for line in fr.readlines():
line = line.rstrip('\n')
line = line.split('----')
assert len(line) == 3 # review, sentiment, topic_cged
datum = dict()
datum["review"] = line[0]
datum["sentiment"] = line[1]
datum["topic_cged"] = line[2]
self.gen_data.append(datum)
random.shuffle(self.gen_data)
'''
[
{
'review':"...",
'attr_1':"...",
...
'attr_n':"..."
}
]
'''
self.combs = list()
self.attributes = dict()
for datum in self.gen_data:
comb = dict()
for key in datum.keys():
if key != 'review':
comb[key] = datum[key]
if key not in self.attributes:
self.attributes[key] = [datum[key]]
else:
if datum[key] not in self.attributes[key]:
self.attributes[key].append(datum[key])
if comb not in self.combs:
self.combs.append(comb)
# self.combs = [comb1, comb2, ...]
def create_train_by_combs(self, hold_combs:list)->None:
'''
e.g.,: hold_num = 1; hold_comb = [{'sentiment':'Pos', 'cuisine':'Mexican', ...}]
e.g.,: hold_num = 2; hold_comb = [dict_1, dict_2] (dict_1 = {'sentiment':..., ...})
'''
self.train = list()
for datum in self.gen_data:
if check_train(datum, hold_combs) == True:
self.train.append(datum)
# attend: no need to construct test_set for open-domain controllable text generation
self.unseen_combs = hold_combs
# test for composiitonal generalization
self.seen_combs = [x for x in self.combs if x not in hold_combs]
# test for i.i.d. generalization
def create_combs_mcd_splits(self, ratio=0.5, times=100000)->None:
'''
this function is to generate the splits of seen combinations || unseen combinations;
then we can use the self.create_train_by_combs to generate the training set.
'''
_combs = list()
keys = list(self.combs[0].keys())
for comb in self.combs:
string = ''
for key in keys:
# keep the same sequence
if string == '':
string = comb[key]
else:
string = string +' '+ comb[key]
_combs.append(string)
max_samples, rand_samples, min_samples = get_mcd_splits(_combs, ratio, times=times)
def transform(inp_samples:list)->list:
'''
inp_samples = list(
tuple(
list_1( str1, str2,... ),
list_2( str1', str2',... )
)
...
)
out_samples = list(
tuple(
list_1( dict1, dict2,... ),
list_2( dict1', dict2',... )
)
)
'''
out_samples = list()
for sample in inp_samples:
seen, unseen = sample # both seen and unseen are lists
_seen = list()
_unseen = list()
for comb in seen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_seen.append(comb_dict)
for comb in unseen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_unseen.append(comb_dict)
out_samples.append((_seen, _unseen))
return out_samples
# mcd_splits = [(seen_combs, unseen_combs),...]
self.max_splits = transform(max_samples) # for maximum divergence (hard)
self.rand_splits = transform(rand_samples) # for random divergence (normal)
self.min_splits = transform(min_samples) # for minimum divergence (easy)
pass
def create_train_fewshot_split(self, shot_num=1)->None:
'''
basically, the fewshot_splits are constructed ** based ** on MCD splits;
'''
_combs = list()
keys = list(self.combs[0].keys())
for comb in self.combs:
string = ''
for key in keys:
# keep the same sequence
if string == '':
string = comb[key]
else:
string = string +' '+ comb[key]
_combs.append(string)
max_attr_dim = 0
for key in self.attributes:
if len(self.attributes[key]) > max_attr_dim:
max_attr_dim = len(self.attributes[key])
max_samples, rand_samples, min_samples = get_fewshot_splits(_combs, max_attr_dim, shot_num)
def transform(inp_samples:list)->list:
'''
inp_samples = list(
tuple(
list_1( str1, str2,... ),
list_2( str1', str2',... )
)
...
)
out_samples = list(
tuple(
list_1( dict1, dict2,... ),
list_2( dict1', dict2',... )
)
)
'''
out_samples = list()
for sample in inp_samples:
seen, unseen = sample # both seen and unseen are lists
_seen = list()
_unseen = list()
for comb in seen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_seen.append(comb_dict)
for comb in unseen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_unseen.append(comb_dict)
out_samples.append((_seen, _unseen))
return out_samples
# mcd_splits = [(seen_combs, unseen_combs),...]
self.fewshot_max_splits = transform(max_samples) # for maximum divergence (hard)
self.fewshot_rand_splits = transform(rand_samples) # for random divergence (normal)
self.fewshot_min_splits = transform(min_samples) # for minimum divergence (easy)
pass
def create_specific_divergence_splits(self, divergence=0., torlerate=0.1, ratio=0.5, times=100000):
'''
this function is to generate the splits of seen combinations || unseen combinations;
then we can use the self.create_train_by_combs to generate the training set.
'''
_combs = list()
keys = list(self.combs[0].keys())
for comb in self.combs:
string = ''
for key in keys:
# keep the same sequence
if string == '':
string = comb[key]
else:
string = string +' '+ comb[key]
_combs.append(string)
samples = get_div_splits(_combs, div=divergence, torlerate= torlerate, ratio=ratio, times=times)
def transform(inp_samples:list)->list:
'''
inp_samples = list(
tuple(
list_1( str1, str2,... ),
list_2( str1', str2',... )
)
...
)
out_samples = list(
tuple(
list_1( dict1, dict2,... ),
list_2( dict1', dict2',... )
)
)
'''
out_samples = list()
for sample in inp_samples:
seen, unseen = sample # both seen and unseen are lists
_seen = list()
_unseen = list()
for comb in seen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_seen.append(comb_dict)
for comb in unseen:
comb_li = comb.split(' ')
comb_dict = dict()
assert len(comb_li) == len(keys)
for i in range(len(keys)):
comb_dict[keys[i]] = comb_li[i]
_unseen.append(comb_dict)
out_samples.append((_seen, _unseen))
return out_samples
# mcd_splits = [(seen_combs, unseen_combs),...]
self.div_splits = transform(samples) # for a specific divergence