forked from fangchangma/sparse-to-dense.pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathguided_ms_net.py
142 lines (114 loc) · 3.58 KB
/
guided_ms_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
import torch
import torch.nn as nn
from torch.nn.parameter import Parameter
import torch.nn.functional as F
import numpy as np
from nconv_sd import CNN as unguided_net
class CNN(nn.Module):
def __init__(self, pos_fn=None):
super().__init__()
# Import the unguided network
self.d_net = unguided_net(pos_fn)
self.d = nn.Sequential(
nn.Conv2d(1,16,3,1,1),
nn.ReLU(),
nn.Conv2d(16,16,3,1,1),
nn.ReLU(),
nn.Conv2d(16,16,3,1,1),
nn.ReLU(),
nn.Conv2d(16,16,3,1,1),
nn.ReLU(),
nn.Conv2d(16,16,3,1,1),
nn.ReLU(),
nn.Conv2d(16,16,3,1,1),
nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU()
)#11,664 Params
# RGB stream
self.rgb = nn.Sequential(
nn.Conv2d(4,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU()
)#186,624 Params
# Fusion stream
self.fuse = nn.Sequential(
nn.Conv2d(80,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,64,3,1,1),
nn.ReLU(),
nn.Conv2d(64,32,3,1,1),
nn.ReLU(),
nn.Conv2d(32,32,3,1,1),
nn.ReLU(),
nn.Conv2d(32,32,3,1,1),
nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
#nn.Conv2d(64,64,3,1,1),
#nn.ReLU(),
nn.Conv2d(32,1,1,1),
#nn.Sigmoid()
)# 156,704 Params
# Init Weights
for m in self.modules():
if isinstance(m, nn.Sequential):
for p in m:
if isinstance(p, nn.Conv2d):
nn.init.xavier_normal_(p.weight)
nn.init.constant_(p.bias, 0.01)
self.x0_d = []
self.xout_d = []
self.x0_rgb = []
self.xout_rgb = []
self.xf = []
self.c0 = []
self.cout_d = []
def forward(self, x0):
assert x0.shape[1] == 4, "The input is not RGB-D"
x0_rgb = x0[:,:3,:,:]
x0_d = x0[:,3:,:,:]
c0 = (x0_d>0).float()
self.x0_d = x0_d
self.x0_rgb = x0_rgb
self.c0 = c0
# Depth Network
xout_d, cout_d = self.d_net(x0_d, c0)
xout_d = self.d(xout_d)
self.xout_d = xout_d
self.cout_d = cout_d
# RGB network
xout_rgb = self.rgb(torch.cat((x0_rgb, cout_d),1))
self.xout_rgb = xout_rgb
# Fusion Network
xout = self.fuse(torch.cat((xout_rgb, xout_d),1))
self.xf = xout
self.cf = cout_d
return xout