-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathxo.py
255 lines (207 loc) · 8.58 KB
/
xo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
import random
import copy
import json
import time
import sys
class AbstractGame:
def getNextStateFromStateAndAction(self, state, action):
return NotImplemented
def getInitialState(self, state, action):
return NotImplemented
def isTerminalState(self, state):
return NotImplemented
def getRewardForStateAndAction(self, state, action):
return NotImplemented
def getValidActionsForState(self, state):
return NotImplemented
class XOGame(AbstractGame):
def getNextStateFromStateAndAction(self, state, action):
next_state = copy.deepcopy(state)
next_state[1] = 'O' if state[1] == 'X' else 'X'
next_state[0][action[0]][action[1]] = state[1]
return next_state
def getInitialState(self):
return [[['.', '.', '.'],['.', '.','.'],['.', '.', '.']], 'X']
def isTerminalState(self, state):
board = state[0]
winner = self.getBoardWinner(board)
if winner is not None:
return True
return self.__isAllFilled(board)
def getRewardForStateAndAction(self, state, action):
assert not self.isTerminalState(state)
next_state = self.getNextStateFromStateAndAction(state, action)
if self.isTerminalState(next_state):
board = next_state[0]
return 100 if self.getBoardWinner(board) is not None else 0
return 0
def getValidActionsForState(self, state):
board = state[0]
actions = []
for r in range(3):
for c in range(3):
if board[r][c] == '.':
actions.append((r, c))
return actions
def printBoardFromState(self, state):
board = state[0]
for i in range(3):
print board[i]
print '---------------'
def __isAllFilled(self, board):
return all([all([col != '.' for col in row]) for row in board])
def getBoardWinner(self, board):
for i in range(3):
col_winner = self.__getColWinner(board, i)
if col_winner is not None:
return col_winner
row_winner = self.__getRowWinner(board, i)
if row_winner is not None:
return row_winner
return self.__getDiagonalsWinner(board)
def __getRowWinner(self, board, row_idx):
if board[row_idx][0] == board[row_idx][1] and board[row_idx][0] == board[row_idx][2]:
return board[row_idx][0] if board[row_idx][0] != '.' else None
return None
def __getColWinner(self, board, col_idx):
if board[0][col_idx] == board[1][col_idx] and board[0][col_idx] == board[2][col_idx]:
return board[0][col_idx] if board[0][col_idx] != '.' else None
return None
def __getDiagonalsWinner(self, board):
if board[0][0] == board[1][1] and board[0][0] == board[2][2]:
return board[0][0] if board[0][0] != '.' else None
if board[0][2] == board[1][1] and board[0][2] == board[2][0]:
return board[0][2] if board[0][2] != '.' else None
return None
class Agent:
def makeAction(self, state, game):
return NotImplemented
def observe(self, state, score, game):
if game.isTerminalState(state):
return None
return self.makeAction(state, game)
class RandomAgent(Agent):
def makeAction(self, state, game):
actions = game.getValidActionsForState(state)
return random.choice(actions)
class HumanAgent(Agent):
def makeAction(self, state, game):
inp = input()
return inp
class MinMaxAgent(Agent):
def __init__(self):
self.memo = {}
def makeAction(self, state, game):
return self.__getBestActionAndValue(state, game)[0]
def __minMax(self, state, game):
assert not game.isTerminalState(state)
return self.__getBestActionAndValue(state, game)
def __getBestActionAndValue(self, state, game):
serialized_state = json.dumps(state)
if serialized_state in self.memo:
return self.memo[serialized_state]
actions = game.getValidActionsForState(state)
actions_values = []
for action in actions:
action_value = 0
next_state = game.getNextStateFromStateAndAction(state, action)
if game.isTerminalState(next_state):
action_value = game.getRewardForStateAndAction(state, action)
else:
action_value = -self.__minMax(next_state, game)[1]
actions_values.append(action_value)
best_value = max(actions_values)
self.memo[serialized_state] = (actions[actions_values.index(best_value)], best_value)
return (actions[actions_values.index(best_value)], best_value)
class QLearnerModelAgent(Agent):
def __init__(self):
self.q_values = {}
self.v_values = {}
self.policy = {}
self.episode = []
self.discount = 1
self.learning_rate = 0.3
self.greedy_eps = 0.4
def makeAction(self, state, game):
actions = game.getValidActionsForState(state)
random_val = random.uniform(0, 1)
if (random_val <= self.greedy_eps):
action = random.choice(actions)
else:
action = self.__getPolicyAction(state, actions)
self.episode.append(action)
return action
def __getPolicyAction(self, state, actions):
serialized_state = json.dumps(state)
if serialized_state not in self.policy:
self.policy[serialized_state] = random.choice(actions)
return self.policy[serialized_state]
def observe(self, state, score, game):
self.episode.append((state, score))
if game.isTerminalState(state):
self.__learnFromEpisode()
return None
return self.makeAction(state, game)
def __learnFromEpisode(self):
episode = list(reversed(self.episode))
self.episode = []
self.v_values[json.dumps(episode[0][0])] = 0 #terminal state
for i in range(1, len(episode), 2):
action = episode[i]
state = episode[i + 1][0]
score = episode[i + 1][1]
next_state = episode[i - 1][0]
next_score = episode[i - 1][1]
assert not game.isTerminalState(state)
reward = next_score - score
if json.dumps(state) not in self.q_values:
self.q_values[json.dumps(state)] = {}
if json.dumps(action) not in self.q_values[json.dumps(state)]:
self.q_values[json.dumps(state)][json.dumps(action)] = 0
old_q_value = self.q_values[json.dumps(state)][json.dumps(action)]
self.q_values[json.dumps(state)][json.dumps(action)] = (1 - self.learning_rate) * old_q_value + self.learning_rate * (reward + self.discount * self.v_values[json.dumps(next_state)])
all_actions = game.getValidActionsForState(state)
actions_q_values = [self.q_values[json.dumps(state)].get(json.dumps(action), 0) for action in all_actions]
self.v_values[json.dumps(state)] = max(actions_q_values)
self.policy[json.dumps(state)] = all_actions[actions_q_values.index(max(actions_q_values))]
self.greedy_eps -= 0.005
self.learning_rate -= 0.00001
if self.learning_rate < 0:
self.learning_rate = 0
players = [QLearnerModelAgent(), RandomAgent()]
game = XOGame()
'''print players[1].observe([[['X', 'O', 'X'],['O', 'O', '.'],['.', 'X', '.']], 'O'], 0, game)
sys.exit(0)'''
totalx = 0
totalo = 0
total_games = 10000
for x in range(2):
for i in range(total_games):
game = XOGame()
current_state = game.getInitialState()
player_in_turn = 0
while not game.isTerminalState(current_state):
player_action = players[player_in_turn].observe(current_state, 0, game)
current_state = game.getNextStateFromStateAndAction(current_state, player_action)
if x == 1:
game.printBoardFromState(current_state)
if player_in_turn == 1:
print players[0].v_values.get(json.dumps(current_state), 0)
player_in_turn += 1
player_in_turn %= 2
winner = game.getBoardWinner(current_state[0])
score = 0
if winner == 'X':
score = 10000
totalx += 1
elif winner == 'O':
score = -100
totalo += 1
players[0].observe(current_state, score , game)
if x == 1:
print winner, ' wins'
print 'X wins', totalx
print 'O wins', totalo
print 1.0 * totalo / total_games
players[1] = HumanAgent()
players[0].learning_rate = 0.7