-
Notifications
You must be signed in to change notification settings - Fork 640
/
keras_eager_tf_2.py
66 lines (56 loc) · 2.97 KB
/
keras_eager_tf_2.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
import tensorflow as tf
from tensorflow import keras
import datetime as dt
tf.enable_eager_execution()
(x_train, y_train), (x_test, y_test) = keras.datasets.cifar10.load_data()
# prepare training data
train_dataset = tf.data.Dataset.from_tensor_slices((x_train, y_train)).batch(32).shuffle(10000)
train_dataset = train_dataset.map(lambda x, y: (tf.div(tf.cast(x, tf.float32), 255.0), tf.reshape(tf.one_hot(y, 10), (-1, 10))))
train_dataset = train_dataset.map(lambda x, y: (tf.image.random_flip_left_right(x), y))
train_dataset = train_dataset.repeat()
# prepare validation data
valid_dataset = tf.data.Dataset.from_tensor_slices((x_test, y_test)).batch(5000).shuffle(10000)
valid_dataset = valid_dataset.map(lambda x, y: (tf.div(tf.cast(x, tf.float32),255.0), tf.reshape(tf.one_hot(y, 10), (-1, 10))))
valid_dataset = valid_dataset.repeat()
class CIFAR10Model(keras.Model):
def __init__(self):
super(CIFAR10Model, self).__init__(name='cifar_cnn')
self.conv1 = keras.layers.Conv2D(64, 5,
padding='same',
activation=tf.nn.relu,
kernel_initializer=tf.initializers.variance_scaling,
kernel_regularizer=keras.regularizers.l2(l=0.001))
self.max_pool2d = keras.layers.MaxPooling2D((3, 3), (2, 2), padding='same')
self.max_norm = keras.layers.BatchNormalization()
self.conv2 = keras.layers.Conv2D(64, 5,
padding='same',
activation=tf.nn.relu,
kernel_initializer=tf.initializers.variance_scaling,
kernel_regularizer=keras.regularizers.l2(l=0.001))
self.flatten = keras.layers.Flatten()
self.fc1 = keras.layers.Dense(750, activation=tf.nn.relu,
kernel_initializer=tf.initializers.variance_scaling,
kernel_regularizer=keras.regularizers.l2(l=0.001))
self.dropout = keras.layers.Dropout(0.5)
self.fc2 = keras.layers.Dense(10)
self.softmax = keras.layers.Softmax()
def call(self, x):
x = self.max_pool2d(self.conv1(x))
x = self.max_norm(x)
x = self.max_pool2d(self.conv2(x))
x = self.max_norm(x)
x = self.flatten(x)
x = self.dropout(self.fc1(x))
x = self.fc2(x)
return self.softmax(x)
model = CIFAR10Model()
model.compile(optimizer=tf.train.AdamOptimizer(),
loss='categorical_crossentropy',
metrics=['accuracy'])
callbacks = [
# Write TensorBoard logs to `./logs` directory
keras.callbacks.TensorBoard(log_dir='./log/{}'.format(dt.datetime.now().strftime("%Y-%m-%d-%H-%M-%S")), write_images=True)
]
model.fit(train_dataset, epochs=200, steps_per_epoch=1500,
validation_data=valid_dataset,
validation_steps=3, callbacks=callbacks)