-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathneural_net.py
executable file
·229 lines (204 loc) · 6.54 KB
/
neural_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
#!/usr/bin/env python
import collections, time, math, random, os
import torch, re, sys
import torch.nn.functional as F
import numpy as np
from sklearn.neural_network import MLPClassifier
from googletrans import Translator
from tqdm import tqdm
import baseline
import naive_bayes as NB
FREQUENCY_DICT = torch.load('data/frequency_dict')
class Net(torch.nn.Module):
def __init__(self):
super().__init__()
self.layers = torch.nn.Sequential(
torch.nn.Linear(2, 480),
torch.nn.ReLU(),
torch.nn.Linear(480, 240),
torch.nn.ReLU(),
torch.nn.Linear(240, 120),
torch.nn.ReLU(),
torch.nn.Linear(120, 64),
torch.nn.ReLU(),
torch.nn.Linear(64, 32),
torch.nn.ReLU(),
torch.nn.Linear(32, 10),
torch.nn.ReLU(),
torch.nn.Linear(10, 7),
torch.nn.Softmax(dim=0)
)
def forward(self, x):
return self.layers(x)
'''
split hsk data into train and dev sets
train = 5/6th of data, dev = 1/6th
'''
def hsk_data():
X = []
train = []
dev = []
vocab = []
path = "data/HSK"
for file in os.listdir(path):
if file == 'characters':
continue
file_path = path + '/' + file
level = int(file.split('HSK')[1].split('.txt')[0])
words = open(file_path, 'r').read().split('\n')
random.shuffle(words)
size = len(words)
for i, word in enumerate(words):
X.append([word, level])
if i < 5*size/6:
train.append([word, level])
else:
dev.append([word, level])
for c in word:
vocab.append(c)
torch.save(X, 'data/HSK/all_vocab')
torch.save(set(vocab), 'data/HSK/characters')
torch.save(train, 'data/train')
torch.save(dev, 'data/dev')
return X
'''
annotate input file with list of advanced words
'''
def write_study_guide(advanced_words, file):
advanced_words_set = set(advanced_words)
S = '\033[4m'
E = '\033[0m'
text = open("data/test/segmented_text/" + file, 'r').read()
segments = text.split(' ')
outfile = open("results/" + file, "w")
for s in tqdm(segments):
if s in advanced_words_set:
outfile.write(S + s + E + baseline.translate(s))
advanced_words_set.remove(s) #dont annotate twice
else:
outfile.write(s)
outfile.close()
def encode(word):
if word not in FREQUENCY_DICT:
word_freq = 0
else:
word_freq = FREQUENCY_DICT[word]
NB_result = NB.test_word(word)
return [word_freq, NB_result]
def test_net(m):
m.eval()
total_f1 = 0
path = "data/test/segmented_text"
file_count = 0
for file in os.listdir(path):
file_count += 1
file_path = path + '/' + file
text = open(file_path, 'r').read()
segments = text.split(' ')
found = []
for s in segments:
if baseline.num_or_eng(s):
continue
x = encode(s)
x = torch.tensor(x, dtype=torch.float)
pred = m(x)
level_pred = torch.argmax(pred).item()
if level_pred >= 5:
found.append(s)
#write_study_guide(found, file)
real = open("data/test/vocab/" + file, 'r').read().split('\n')
false_pos = 0
true_pos = 0
false_neg = 0
for word in set(found):
if word not in real:
false_pos += 1
if word in real:
true_pos += 1
for word in real:
if word not in found:
false_neg += 1
f_score = true_pos / (true_pos + 0.5*(false_pos + false_neg))
total_f1 += f_score
print(f'{file} F1: {f_score}')
print(f'fp: {false_pos}, fn: {false_neg}, tp: {true_pos}')
print(f'Total F1: {total_f1/file_count}')
'''
encode training and dev data
'''
def train_encode():
train = torch.load('data/train')
dev = torch.load('data/dev')
train_encoding = []
for entry in train:
word, level = entry
if baseline.num_or_eng(word):
continue
encoding = encode(word)
encoding = torch.tensor(encoding, dtype=torch.float)
train_encoding.append([encoding, level])
dev_encoding = []
for entry in dev:
word, level = entry
if baseline.num_or_eng(word):
continue
encoding = encode(word)
encoding = torch.tensor(encoding, dtype=torch.float)
dev_encoding.append([encoding, level])
torch.save(train_encoding, 'data/train.encoded')
torch.save(dev_encoding, 'data/dev.encoded')
def train_net(m):
train_encoding = torch.load('data/train.encoded')
dev_encoding = torch.load('data/dev.encoded')
optimizer = torch.optim.SGD(m.parameters(), lr=0.001)
criterion = torch.nn.CrossEntropyLoss()
prev_dev_acc = None
best_dev_acc = 0
for epoch in range(100):
m.train()
random.shuffle(train_encoding)
for entry in tqdm(train_encoding):
e, level = entry
pred = m(e)
outputs = pred.unsqueeze(dim=0)
level_pred = torch.argmax(pred).item()
loss = criterion(outputs, torch.tensor([level]))
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(m.parameters(), 1.0)
optimizer.step()
dev_loss = 0.
dev_words = dev_correct = 0
m.eval()
random.shuffle(dev_encoding)
for entry in dev_encoding:
dev_words += 1
e, level = entry
pred = m(e)
outputs = pred.unsqueeze(dim=0)
level_pred = torch.argmax(pred).item()
loss = criterion(outputs, torch.tensor([level]))
dev_loss -= loss
if level_pred == level:
dev_correct += 1
dev_acc = dev_correct/dev_words
print(f'epoch={epoch+1} dev_loss={dev_loss} dev_acc={dev_acc}')
if prev_dev_acc is not None and dev_acc <= prev_dev_acc:
optimizer.param_groups[0]['lr'] *= 0.5
print(f"lr={optimizer.param_groups[0]['lr']}")
if dev_acc > best_dev_acc:
torch.save(m, 'model')
best_dev_acc = dev_acc
prev_dev_acc = dev_acc
if epoch % 10 == 0:
test_net(m)
def main():
# HSK ANN
net = Net()
train_encode()
#train_net(net)
#m = torch.load('model')
#test_net(m)
#train()
if __name__ == "__main__":
main()