-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathrecognize.py
62 lines (55 loc) · 2.51 KB
/
recognize.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
import os
import sys
import pickle
import cv2
from imutils import paths
import face_recognition
# find path of xml file containing haarcascade file
face_cascade = cv2.CascadeClassifier(cv2.data.haarcascades + 'haarcascade_frontalface_default.xml')
# load the known faces and embeddings saved in last file
data = pickle.loads(open('face_encodings', "rb").read())
# find path to the image we want to detect face
image_path = 'samples/Ainyava.jpg'
image = cv2.imread(image_path)
rgb = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
# convert image to Greyscale for haarcascade
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
faces = face_cascade.detectMultiScale(gray, scaleFactor=1.1, minNeighbors=5, minSize=(60, 60),
flags=cv2.CASCADE_SCALE_IMAGE)
# the facial embeddings for face in input
encodings = face_recognition.face_encodings(rgb)
names = []
# loop over the facial embeddings incase
# we have multiple embeddings for multiple fcaes
for encoding in encodings:
# compare encodings with encodings in data["encodings"]
# matches contain array with boolean values and True for the embeddings it matches closely
# and False for rest
matches = face_recognition.compare_faces(data['encodings'], encoding)
#set name Unknown if no encoding matches
name = 'Unknown'
# check to see if we have found a match
if True in matches:
#Find positions at which we get True and store them
matched_indexes = [i for (i, b) in enumerate(matches) if b]
counts = {}
# loop over the matched indexes and maintain a count for
# each recognized face face
for i in matched_indexes:
# check the names at respective indexes we stored in matchedIdxs
name = data['names'][i]
# increase count for the name we got
counts[name] = counts.get(name, 0) + 1
# set name which has highest count (to increase accuracy)
name = max(counts, key=counts.get)
# update the list of names
names.append(name)
# loop over the recognized faces
for ( (x, y, w, h), name) in zip(faces, names):
# draw reactangle around face and the predicted name on the image
cv2.rectangle(image, (x,y), (x+w, y+h), (0, 0, 255), 2)
cv2.putText(image, name, (x, y), cv2.FONT_HERSHEY_SIMPLEX, 0.75, (0, 0, 255), 2)
# open a window to display the results
cv2.imshow(f'Detected face for {image_path}', image)
cv2.waitKey(0)
cv2.destroyAllWindows()