-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathBehaviourCloning .py
174 lines (142 loc) · 4.48 KB
/
BehaviourCloning .py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
# To add a new cell, type '# %%'
# To add a new markdown cell, type '# %% [markdown]'
# %%
import gym
from PPO import PPO
from PIL import Image
import torch
import torch.nn as nn
from torch.distributions import Categorical
import time
import numpy as np
# %%
env_name = "LunarLander-v2"
# creating environment
env = gym.make(env_name)
state_dim = env.observation_space.shape[0]
action_dim = 4
device = "cpu"
# %%
class ActorCritic(nn.Module):
def __init__(self, state_dim, action_dim, n_latent_var):
super(ActorCritic, self).__init__()
# actor
self.action_layer = nn.Sequential(
nn.Linear(state_dim, n_latent_var),
nn.Tanh(),
nn.Linear(n_latent_var, n_latent_var),
nn.Tanh(),
nn.Linear(n_latent_var, action_dim),
nn.Softmax(dim=-1)
)
# critic
self.value_layer = nn.Sequential(
nn.Linear(state_dim, n_latent_var),
nn.Tanh(),
nn.Linear(n_latent_var, n_latent_var),
nn.Tanh(),
nn.Linear(n_latent_var, 1)
)
def forward(self):
raise NotImplementedError
def act(self, state):
state = torch.from_numpy(state).float().to(device)
action_probs = self.action_layer(state)
dist = Categorical(action_probs)
action = dist.sample()
return action.item()
ppo = ActorCritic(state_dim, action_dim, 64)
# %%
ppo.load_state_dict(torch.load("PPO_LunarLander-v2.pth"))
# %%
## This is only for testing if it works
state = env.reset()
while True:
action = ppo.act(state)
env.render()
next_state, reward, done, _ = env.step(action)
state = next_state
time.sleep(0.01)
if done: break
env.close()
# %% [markdown]
# #### Start of behaviour Cloning
# %%
class Storage:
def __init__(self):
self.states = []
self.actions = []
def reset(self):
del self.states[:]
del self.actions[:]
def return_onehot(self, data, size = action_dim):
final = [0]*size
final[data] += 1
return torch.tensor(final).float().reshape(1,-1).to(device)
def stack(self, data):
return torch.cat(data, dim=0).detach()
def sample(self):
return self.stack(self.states), self.stack(self.actions)
def random_sample(indices, batch_size):
indices = np.asarray(np.random.permutation(indices))
batches = indices[:len(indices) // batch_size * batch_size].reshape(-1, batch_size)
for batch in batches:
yield batch
r = len(indices) % batch_size
if r:
yield indices[-r:]
# %%
max_len = 200
initial_episode = 20
lr = 0.0003
betas = (0.9, 0.999)
batch_size = 128
training_epoch = 1000
initial_collection_visizliztion = False
# %%
## Data Collection
storage = Storage()
for k in range(initial_episode):
state = env.reset()
for i in range(max_len):
action = ppo.act(state)
if initial_collection_visizliztion: env.render()
storage.states.append(torch.tensor(state).reshape(1,-1))
storage.actions.append(storage.return_onehot(action))
next_state, reward, done, _ = env.step(action)
state = next_state
time.sleep(0.01)
if done: break
print("\rCurrent Iteration {} ".format(k), end = " ")
if initial_collection_visizliztion: env.close()
# %%
states, actions = storage.sample()
behavior_cloniing = ActorCritic(state_dim, action_dim, 64).to(device)
optimizer = torch.optim.Adam(behavior_cloniing.parameters(), lr=lr, betas=betas)
# optimizer = torch.optim.SGD(behavior_cloniing.parameters(), lr = 0.01)
MseLoss = nn.MSELoss()
# %%
## Training Network for supervised network
for i in range(training_epoch):
loss_sample = []
for sampled_set in random_sample(np.arange(states.size()[0]), batch_size):
y_pred = behavior_cloniing.action_layer(states[sampled_set])
y_actual = actions[sampled_set]
optimizer.zero_grad()
loss = MseLoss(y_pred, y_actual)
loss_sample.append(loss.data)
loss.backward()
optimizer.step()
if i%10 == 0:
print("Iteration {} with Current Loss :{}".format(i, sum(loss_sample)*(1/len(loss_sample))))
# %%
## This is only for testing if it works
state = env.reset()
while True:
action = behavior_cloniing.act(state)
env.render()
next_state, reward, done, _ = env.step(action)
state = next_state
time.sleep(0.01)
if done: break
env.close()