-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy path2Bostondata.py
71 lines (43 loc) · 1.37 KB
/
2Bostondata.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
"""
Created on Fri Jun 28 16:18:11 2019
@author: aman
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
#from pandas.plotting import scatter_matrix
dataset=pd.read_csv("/home/aman/ML/DataSet/housing.csv")
dataset.head()
X = dataset.iloc[:,[0,1,2,3,4,5,6,7,9]].values
y = dataset.iloc[:,8].values
#pd.plotting.scatter_matrix(dataset)
dataset.isnull().sum()
#dataset["total_bedrooms"].isnull().sum()
from sklearn.preprocessing import Imputer
im=Imputer(missing_values="NaN",strategy="median")
X[:,[4]]=im.fit_transform(X[:,[4]])
from sklearn.preprocessing import LabelEncoder
lib=LabelEncoder()
X[:,8]=lib.fit_transform(X[:,8])
from sklearn.preprocessing import OneHotEncoder
one =OneHotEncoder(categorical_features=[8])
X=one.fit_transform(X)
X = X.toarray()
from sklearn.linear_model import LinearRegression
linreg=LinearRegression()
linreg.fit(X,y)
linreg.score(X,y)
from sklearn.preprocessing import StandardScaler
sc=StandardScaler()
X = sc.fit_transform(X)
from sklearn.model_selection import train_test_split
X_train,X_test,y_train,y_test=train_test_split(X,y)
from sklearn.linear_model import LinearRegression
lin=LinearRegression()
lin.fit(X_train,y_train)
ypred=lin.predict(X_test)
lin.score(X_test,y_test)
from
#if radj is negetive then the model you created is not eliiglible for the prediction