Skip to content

Commit 708bf2d

Browse files
authored
Add files via upload
1 parent 589f766 commit 708bf2d

File tree

1 file changed

+71
-0
lines changed

1 file changed

+71
-0
lines changed

2Bostondata.py

+71
Original file line numberDiff line numberDiff line change
@@ -0,0 +1,71 @@
1+
#!/usr/bin/env python3
2+
# -*- coding: utf-8 -*-
3+
"""
4+
Created on Fri Jun 28 16:18:11 2019
5+
6+
@author: aman
7+
"""
8+
9+
import numpy as np
10+
import pandas as pd
11+
import matplotlib.pyplot as plt
12+
13+
#from pandas.plotting import scatter_matrix
14+
15+
16+
dataset=pd.read_csv("/home/aman/ML/DataSet/housing.csv")
17+
dataset.head()
18+
19+
X = dataset.iloc[:,[0,1,2,3,4,5,6,7,9]].values
20+
y = dataset.iloc[:,8].values
21+
22+
#pd.plotting.scatter_matrix(dataset)
23+
24+
25+
dataset.isnull().sum()
26+
27+
28+
#dataset["total_bedrooms"].isnull().sum()
29+
30+
31+
32+
33+
from sklearn.preprocessing import Imputer
34+
im=Imputer(missing_values="NaN",strategy="median")
35+
X[:,[4]]=im.fit_transform(X[:,[4]])
36+
37+
from sklearn.preprocessing import LabelEncoder
38+
lib=LabelEncoder()
39+
X[:,8]=lib.fit_transform(X[:,8])
40+
41+
from sklearn.preprocessing import OneHotEncoder
42+
one =OneHotEncoder(categorical_features=[8])
43+
X=one.fit_transform(X)
44+
X = X.toarray()
45+
46+
47+
from sklearn.linear_model import LinearRegression
48+
linreg=LinearRegression()
49+
linreg.fit(X,y)
50+
linreg.score(X,y)
51+
52+
from sklearn.preprocessing import StandardScaler
53+
sc=StandardScaler()
54+
X = sc.fit_transform(X)
55+
56+
57+
from sklearn.model_selection import train_test_split
58+
X_train,X_test,y_train,y_test=train_test_split(X,y)
59+
60+
from sklearn.linear_model import LinearRegression
61+
lin=LinearRegression()
62+
lin.fit(X_train,y_train)
63+
64+
65+
ypred=lin.predict(X_test)
66+
67+
lin.score(X_test,y_test)
68+
69+
70+
from
71+
#if radj is negetive then the model you created is not eliiglible for the prediction

0 commit comments

Comments
 (0)