|
| 1 | +{ |
| 2 | + "cells": [ |
| 3 | + { |
| 4 | + "cell_type": "markdown", |
| 5 | + "id": "153aaca2", |
| 6 | + "metadata": {}, |
| 7 | + "source": [ |
| 8 | + "# AZCausal Integration\n", |
| 9 | + "\n", |
| 10 | + "Amazon's [AZCausal](https://github.com/amazon-science/azcausal) library provides the\n", |
| 11 | + "functionality to fit synthetic control and difference-in-difference models to your\n", |
| 12 | + "data. Integrating the synthetic data generating process of `causal_validation` with\n", |
| 13 | + "AZCausal is trivial, as we show in this notebook. To start, we'll simulate a toy\n", |
| 14 | + "dataset." |
| 15 | + ] |
| 16 | + }, |
| 17 | + { |
| 18 | + "cell_type": "code", |
| 19 | + "execution_count": null, |
| 20 | + "id": "b134b49f", |
| 21 | + "metadata": {}, |
| 22 | + "outputs": [], |
| 23 | + "source": [ |
| 24 | + "from azcausal.estimators.panel.sdid import SDID\n", |
| 25 | + "import scipy.stats as st\n", |
| 26 | + "\n", |
| 27 | + "from causal_validation import (\n", |
| 28 | + " Config,\n", |
| 29 | + " simulate,\n", |
| 30 | + ")\n", |
| 31 | + "from causal_validation.effects import StaticEffect\n", |
| 32 | + "from causal_validation.plotters import plot\n", |
| 33 | + "from causal_validation.transforms import (\n", |
| 34 | + " Periodic,\n", |
| 35 | + " Trend,\n", |
| 36 | + ")\n", |
| 37 | + "from causal_validation.transforms.parameter import UnitVaryingParameter" |
| 38 | + ] |
| 39 | + }, |
| 40 | + { |
| 41 | + "cell_type": "code", |
| 42 | + "execution_count": null, |
| 43 | + "id": "86ba26f3", |
| 44 | + "metadata": {}, |
| 45 | + "outputs": [], |
| 46 | + "source": [ |
| 47 | + "cfg = Config(\n", |
| 48 | + " n_control_units=10,\n", |
| 49 | + " n_pre_intervention_timepoints=60,\n", |
| 50 | + " n_post_intervention_timepoints=30,\n", |
| 51 | + " seed=123,\n", |
| 52 | + ")\n", |
| 53 | + "\n", |
| 54 | + "linear_trend = Trend(degree=1, coefficient=0.05)\n", |
| 55 | + "data = linear_trend(simulate(cfg))\n", |
| 56 | + "plot(data)" |
| 57 | + ] |
| 58 | + }, |
| 59 | + { |
| 60 | + "cell_type": "markdown", |
| 61 | + "id": "ae979b7b", |
| 62 | + "metadata": { |
| 63 | + "title": "We'll now simulate a 5% lift in the treatment group's observations. This" |
| 64 | + }, |
| 65 | + "source": [ |
| 66 | + "will inflate the treated group's observations in the post-intervention window." |
| 67 | + ] |
| 68 | + }, |
| 69 | + { |
| 70 | + "cell_type": "code", |
| 71 | + "execution_count": null, |
| 72 | + "id": "45f9e99f", |
| 73 | + "metadata": {}, |
| 74 | + "outputs": [], |
| 75 | + "source": [ |
| 76 | + "TRUE_EFFECT = 0.05\n", |
| 77 | + "effect = StaticEffect(effect=TRUE_EFFECT)\n", |
| 78 | + "inflated_data = effect(data)\n", |
| 79 | + "plot(inflated_data)" |
| 80 | + ] |
| 81 | + }, |
| 82 | + { |
| 83 | + "cell_type": "markdown", |
| 84 | + "id": "0ff7c192", |
| 85 | + "metadata": {}, |
| 86 | + "source": [ |
| 87 | + "## Fitting a model\n", |
| 88 | + "\n", |
| 89 | + "We now have some very toy data on which we may apply a model. For this demonstration\n", |
| 90 | + "we shall use the Synthetic Difference-in-Differences model implemented in AZCausal;\n", |
| 91 | + "however, the approach shown here will work for any model implemented in AZCausal. To\n", |
| 92 | + "achieve this, we must first coerce the data into a format that is digestible for\n", |
| 93 | + "AZCausal. Through the `.to_azcausal()` method implemented here, this is\n", |
| 94 | + "straightforward to achieve. Once we have a AZCausal compatible dataset, the modelling\n", |
| 95 | + "is very simple by virtue of the clean design of AZCausal." |
| 96 | + ] |
| 97 | + }, |
| 98 | + { |
| 99 | + "cell_type": "code", |
| 100 | + "execution_count": null, |
| 101 | + "id": "db0f85d8", |
| 102 | + "metadata": {}, |
| 103 | + "outputs": [], |
| 104 | + "source": [ |
| 105 | + "panel = inflated_data.to_azcausal()\n", |
| 106 | + "model = SDID()\n", |
| 107 | + "result = model.fit(panel)\n", |
| 108 | + "print(f\"Delta: {TRUE_EFFECT - result.effect.percentage().value / 100}\")\n", |
| 109 | + "print(result.summary(title=\"Synthetic Data Experiment\"))" |
| 110 | + ] |
| 111 | + }, |
| 112 | + { |
| 113 | + "cell_type": "markdown", |
| 114 | + "id": "5c71b479", |
| 115 | + "metadata": { |
| 116 | + "title": "We see that SDID has done an excellent job of estimating the treatment" |
| 117 | + }, |
| 118 | + "source": [ |
| 119 | + "effect. However, given the simplicity of the data, this is not surprising. With the\n", |
| 120 | + "functionality within this package though we can easily construct more complex datasets\n", |
| 121 | + "in effort to fully stress-test any new model and identify its limitations.\n", |
| 122 | + "\n", |
| 123 | + "To achieve this, we'll simulate 10 control units, 60 pre-intervention time points, and\n", |
| 124 | + "30 post-intervention time points according to the following process: $$ \\begin{align}\n", |
| 125 | + "\\mu_{n, t} & \\sim\\mathcal{N}(20, 0.5^2)\\\\\n", |
| 126 | + "\\alpha_{n} & \\sim \\mathcal{N}(0, 1^2)\\\\\n", |
| 127 | + "\\beta_{n} & \\sim \\mathcal{N}(0.05, 0.01^2)\\\\\n", |
| 128 | + "\\nu_n & \\sim \\mathcal{N}(1, 1^2)\\\\\n", |
| 129 | + "\\gamma_n & \\sim \\operatorname{Student-t}_{10}(1, 1^2)\\\\\n", |
| 130 | + "\\mathbf{Y}_{n, t} & = \\mu_{n, t} + \\alpha_{n} + \\beta_{n}t + \\nu_n\\sin\\left(3\\times\n", |
| 131 | + "2\\pi t + \\gamma\\right) + \\delta_{t, n} \\end{align} $$ where the true treatment effect\n", |
| 132 | + "$\\delta_{t, n}$ is 5% when $n=1$ and $t\\geq 60$ and 0 otherwise. Meanwhile,\n", |
| 133 | + "$\\mathbf{Y}$ is the matrix of observations, long in the number of time points and wide\n", |
| 134 | + "in the number of units." |
| 135 | + ] |
| 136 | + }, |
| 137 | + { |
| 138 | + "cell_type": "code", |
| 139 | + "execution_count": null, |
| 140 | + "id": "59d6a88b", |
| 141 | + "metadata": {}, |
| 142 | + "outputs": [], |
| 143 | + "source": [ |
| 144 | + "cfg = Config(\n", |
| 145 | + " n_control_units=10,\n", |
| 146 | + " n_pre_intervention_timepoints=60,\n", |
| 147 | + " n_post_intervention_timepoints=30,\n", |
| 148 | + " global_mean=20,\n", |
| 149 | + " global_scale=1,\n", |
| 150 | + " seed=123,\n", |
| 151 | + ")\n", |
| 152 | + "\n", |
| 153 | + "intercept = UnitVaryingParameter(sampling_dist=st.norm(loc=0.0, scale=1))\n", |
| 154 | + "coefficient = UnitVaryingParameter(sampling_dist=st.norm(loc=0.05, scale=0.01))\n", |
| 155 | + "linear_trend = Trend(degree=1, coefficient=coefficient, intercept=intercept)\n", |
| 156 | + "\n", |
| 157 | + "amplitude = UnitVaryingParameter(sampling_dist=st.norm(loc=1.0, scale=2))\n", |
| 158 | + "shift = UnitVaryingParameter(sampling_dist=st.t(df=10))\n", |
| 159 | + "periodic = Periodic(amplitude=amplitude, shift=shift, frequency=3)\n", |
| 160 | + "\n", |
| 161 | + "data = effect(periodic(linear_trend(simulate(cfg))))\n", |
| 162 | + "plot(data)" |
| 163 | + ] |
| 164 | + }, |
| 165 | + { |
| 166 | + "cell_type": "markdown", |
| 167 | + "id": "5268b01a", |
| 168 | + "metadata": { |
| 169 | + "title": "As before, we may now go about estimating the treatment. However, this" |
| 170 | + }, |
| 171 | + "source": [ |
| 172 | + "time we see that the delta between the estaimted and true effect is much larger than\n", |
| 173 | + "before." |
| 174 | + ] |
| 175 | + }, |
| 176 | + { |
| 177 | + "cell_type": "code", |
| 178 | + "execution_count": null, |
| 179 | + "id": "71d101a2", |
| 180 | + "metadata": {}, |
| 181 | + "outputs": [], |
| 182 | + "source": [ |
| 183 | + "panel = data.to_azcausal()\n", |
| 184 | + "model = SDID()\n", |
| 185 | + "result = model.fit(panel)\n", |
| 186 | + "print(f\"Delta: {100*(TRUE_EFFECT - result.effect.percentage().value / 100): .2f}%\")\n", |
| 187 | + "print(result.summary(title=\"Synthetic Data Experiment\"))" |
| 188 | + ] |
| 189 | + } |
| 190 | + ], |
| 191 | + "metadata": { |
| 192 | + "jupytext": { |
| 193 | + "cell_metadata_filter": "title,-all", |
| 194 | + "main_language": "python", |
| 195 | + "notebook_metadata_filter": "-all" |
| 196 | + } |
| 197 | + }, |
| 198 | + "nbformat": 4, |
| 199 | + "nbformat_minor": 5 |
| 200 | +} |
0 commit comments