-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathNetwork_optimization_model_EDA.html
1725 lines (1609 loc) · 592 KB
/
Network_optimization_model_EDA.html
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta charset="utf-8">
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1">
<meta name="author" content="Afsar Ali" />
<title>Network optimization Project</title>
<style type="text/css">code{white-space: pre;}</style>
<style type="text/css">
div.sourceCode { overflow-x: auto; }
table.sourceCode, tr.sourceCode, td.lineNumbers, td.sourceCode {
margin: 0; padding: 0; vertical-align: baseline; border: none; }
table.sourceCode { width: 100%; line-height: 100%; }
td.lineNumbers { text-align: right; padding-right: 4px; padding-left: 4px; color: #aaaaaa; border-right: 1px solid #aaaaaa; }
td.sourceCode { padding-left: 5px; }
code > span.kw { color: #007020; font-weight: bold; } /* Keyword */
code > span.dt { color: #902000; } /* DataType */
code > span.dv { color: #40a070; } /* DecVal */
code > span.bn { color: #40a070; } /* BaseN */
code > span.fl { color: #40a070; } /* Float */
code > span.ch { color: #4070a0; } /* Char */
code > span.st { color: #4070a0; } /* String */
code > span.co { color: #60a0b0; font-style: italic; } /* Comment */
code > span.ot { color: #007020; } /* Other */
code > span.al { color: #ff0000; font-weight: bold; } /* Alert */
code > span.fu { color: #06287e; } /* Function */
code > span.er { color: #ff0000; font-weight: bold; } /* Error */
code > span.wa { color: #60a0b0; font-weight: bold; font-style: italic; } /* Warning */
code > span.cn { color: #880000; } /* Constant */
code > span.sc { color: #4070a0; } /* SpecialChar */
code > span.vs { color: #4070a0; } /* VerbatimString */
code > span.ss { color: #bb6688; } /* SpecialString */
code > span.im { } /* Import */
code > span.va { color: #19177c; } /* Variable */
code > span.cf { color: #007020; font-weight: bold; } /* ControlFlow */
code > span.op { color: #666666; } /* Operator */
code > span.bu { } /* BuiltIn */
code > span.ex { } /* Extension */
code > span.pp { color: #bc7a00; } /* Preprocessor */
code > span.at { color: #7d9029; } /* Attribute */
code > span.do { color: #ba2121; font-style: italic; } /* Documentation */
code > span.an { color: #60a0b0; font-weight: bold; font-style: italic; } /* Annotation */
code > span.cv { color: #60a0b0; font-weight: bold; font-style: italic; } /* CommentVar */
code > span.in { color: #60a0b0; font-weight: bold; font-style: italic; } /* Information */
</style>
<link href="data:text/css;charset=utf-8,%40font%2Dface%7Bfont%2Dfamily%3A%27Open%20Sans%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A400%3Bsrc%3Alocal%28%27Open%20Sans%27%29%2Clocal%28OpenSans%29%2Curl%28data%3Aapplication%2Ffont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAE8YABIAAAAAhWwAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAF8AAABgoT6eyWNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABZAAAAog9NGKRmcGdtAAADaAAABJsAAAe0fmG2EWdhc3AAAAgEAAAAEAAAABAAFQAjZ2x5ZgAACBQAADWFAABReBn1yj5oZWFkAAA9nAAAADYAAAA293bipmhoZWEAAD3UAAAAHwAAACQNzAapaG10eAAAPfQAAAIIAAADbLTLWYhrZXJuAAA%2F%2FAAAChcAAB6Qo%2Buk42xvY2EAAEoUAAABuQAAAbz3ewp%2FbWF4cAAAS9AAAAAgAAAAIAJ2AgpuYW1lAABL8AAAAKwAAAEyFNwvSnBvc3QAAEycAAABhgAAAiiYDmoRcHJlcAAATiQAAADyAAABCUO3lqQAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d%2BrLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY%2BxPD8ylAsF0tUn%2F4nlj89Z9A7%2BtETl5RXdNNZGDm%2BvXYXWjgLDRzEhoLBAYv0%2F0NHAAAAHgBY2Bm2cY4gYGVgYN1FqsxAwOjPIRmvsiQxviRg4mJm42NmZWFiYnlAQPTewcGhWgGBgYNBiAwdAx2ZgAK%2FP%2FLJv9PhKGFo5cpQoGBcT5IjsWDdRuQUmBgBgD40BA5AHgBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T%2BjIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9%2Fw%2FUpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr%2Fjxn6%2Fz%2F6f5CB9%2F%2Fe%2Fz3%2Fc%2F7%2B%2Bvv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ%2FBj3QYkS1m3sZ5lQAEsHgwiDBMZGP6%2FAfEQ5D8REAnUJfxnyv%2B3%2F1r%2Fv%2Fq3Eigi8W8PA1mAA0J1MzQy3GWYwdDP0Mcwk6GDoZGRn6ELAE09H%2F8AAAB4AXVUR3fbxhPfhRqr%2F6Cr3h8pi4wpN9K9V4QEYCrq7b2F0gC1R%2BXkS3rjKWXlfJeBfaF88jH1M6TfoqNzdWaXxZ0NM7%2FftJ2ZpXfzzeVILi0uzM%2FNzkxPTU68Md64GQZ%2Bvfa6d%2BP6tatXLl%2B6eOH8uVMnTxyvVg4fGisfhNfcV0f3luz%2F7Srmc9nMyPDQ4IDFWUUgjwMcKItSmEAASaNaEcFo069WAghjFIlAegyOQaNhIEhQxALHEqIeg2P0yHLjKUuvY%2Bn1LbktrrKrOgUI%2FMUH0ebLc5Lk73yIBO4YeUrL5GGUIimuSx6mKl2tCDD8oKmCmGrkaT5Xh%2Fp6rlphaS5PYp4kPAy3Un74OjeCdTi4nFosU6Qg%2BqRBsoazczLwHdeNqpVx3AW%2BoVjdhMThOo6YkGJTl862RFq5r263bbYSHyuswVrylsSBhHzVQKDU11g6hkfAxyOf%2FDVKJ1%2FHCvgBHtNRJ%2Bb7eSYepeQ4VLZBqAeMjgM7%2FzyJJF1kuGw%2FYFpEq458Xrr65YTUa6VCEKGKVdJ%2B2FoBYYNKCwV1K6B2s1mJnPB7Ww6GtyO04ya%2FHHWPHs5P4J65NyVa5VA0E0LocwPci45b6tvMvohm1BYc1h12Xd2GrbbHVkjB1pzs6IKtOHeYd%2BJYhFasmfs9Zt%2BSZlo9pu8eg0utWZAKB8vjaxBQx7cSbK3Qdr2nBwM27vrXcUHtLolLJyJjK3CAbDcFDo3hsPZ63IH2RrsoWyskdB47jiKitFtcAgqj4wQQxN3PB81RCiCo0Y1jnUVYlOj5JHhJd2JBevIEeSQxDWzTN8PEE3AL90KtP11dVrC5II1L1w331pHFq10vPBGYeyUCFRvB7PAEzMltdubhb%2BlZ4dw9w86yyNfG%2B%2Bu0ZWOBkmsb%2BGrsrKGIN4R0XPQimnAEcj3CI6ZDR35zzHJEZlcW5cQCTMwty4umkB5B4ajHwVNhQDqdMLSAmClnhLScgYgMbQJESALUrtIvjpQz9LVxuIPSiYgQkjusZ01l4BERrPtdO9KfDErKQLne6EUbJlXHqTccNzL163tuES26ickjo5va6FIkCyIyaFEYA%2BlejuqlFxLWIYKmQG9W0tlMe0yXu80wPe%2FOavEJrd8srSFziSal30wMj5H2mH7T6H218RQ93qOFysDEgtLBoRuQUeXjyPQKexdLjoa4vtAQJiBsEXYutEo9T1%2Fm5mUdBMbXFCzIq8Z6Yl5%2B7nyic%2B1mE3xisVatpBarpcC%2FmUs9%2Fs3Csty2GRPfLMo7FrfqcS1KDxIntwVjnkEtjRJoFKEVHWmelIyxd7Y9xlqGHTSA0VfbnBks08M4W21bHczuJBrTiYixiBnsMF7PepCwTAdrGcy8UqZb5uWGvIyX9QpW0XJSrqE7hNzjjGU5u1vgRe6k5DVv4DZvpVnP6Vi0yMKLOhUvPUq9tCzvFhi5mV9KVNMvWpfRJg1bggjEml6Uz6KmiiN92dh%2BGg19OHK4TmOC61TIcAFzsF7DPNQ0fkPjNzr4sMZHaEX5fk7uLZr9LHK9AW9KF2wU%2F%2F%2FBUfaOnlREfyrK%2Frv6Hyn3ISkAAAEAAwAIAAoADQAH%2F%2F8AD3gBhXwHfFRV1vg5974yvZdMQspkSIYkQkgmhdAyIIQQWsSADCLSpajUiMgiAkuJNGmhKyJGDCyybCiyiGBHRGQtyLIuf2UX19UPy7oWyFz%2B972ZBxOE72N%2BL2%2BYd%2Bbe0%2B5p99wBAscBBIN4ACjI4D4oUJEIVAbIL8wPYX4oP1TQ3um3%2B0v5dZz2bj44nsyKLhYPXKkaL1wCAhuuXcQ69dsWyAu7qF5PBMFqQzQRkzQgYvIQCuXleXYHlCXl2x1YZg%2BF7HxMDNAQLQoVetwuKZCZjRUTQqc%2Ff7RjebisqAeuEQJXmpZUdA%2F3KgcgsJA2kL1xDNPDZqCyQAWdXiIy5YOHThUq4%2FKB1XFpgPr5heVtJuSQvJzxOeKB6HfEplzKWCEA4Sc%2BVgqkw8bwIF16K7fg0ttNJr3DajEKBqfT5UlNkwXJKyD4hCRRlFySwU%2BTvTTJkJTh1wkms6l%2FpBWa08Fmt%2FWP%2BNz2AWYcYEez3WwXvU5qECE%2FVB5ylJXl5993Hyc3zw6hkHaPoerldxVjh7eMX%2FF3hYWxu0KF382pcKpXsV%2B9QlS93Mj%2FSz%2FujinsVE1dDTszcEk1u4LpPdjXmDdw6UAsqFlUg7rmf2J%2Bd3aGLmC757GBuEe55mHNXGxifZVrLtuNNUBhwbU6wSQ5IAOyoS2MCxcH7VmpXkHIdZlFP4BPtOvFdvlZZsncL0Kl1pZcS99Iam5eK1erfhFvrkviL9HDKc5X6OV%2FChUq7aGEvw5U6QuFVCbEhOSSZHegODM7WOzxhOzZ2cVFJaXFIbfHK2cH7WlELuK3EnR5vHZJEkzvHZw35S933n0ucur5ky%2FMO7SraN2mrVuqGiNPnIt%2BNnTy6HF4fMkfvf%2B6EEjfkpWPh7rtXrJgp%2BNAk9hzQScj6194%2F%2ByxlZE72Ow0KvcdloMLbPcBiDD%2B2jdSW%2FEk6MENfk55AfQMtwabaPC0aZWZ2a6Nob1NKgxRc3qemb%2FaF0jtk3xZPtkpc4Xjr3KVXE7WDfpi%2BsfVJ1RotwUyJVFVbE4ZV3JUPi0pLsq%2B%2BXMM4A9Vd%2B%2FYcXcVvrtx7bLN61av2oINVTU11dU1NVV4cuPaFRvXrV7xDGPNH6%2BheQJpbMQaHLiz8R9fXb5w8dLl5vO7XnzhD7uef37Xxa8u%2F%2F3ipa9pxpUqrt5AYeq1b8QPxVNg5BQWw13h9k4PpEqB3Lx2eW0DlmxfqkdfUhoy9Y6EnNZgW0t7MZ%2F6smlubka%2BI0NfFckQoDwPkjih%2Bd4yrpTleTdRqoinJE6Ts7AULcTt8mRxQbYjMeLcXMpYwucgMgaCkrrMn668Z97YBwZHJm%2F%2B%2FhnWZ%2FKwOzazl5c2DerS%2Bo2Xth9eshXXd7jTu7NHHeb98%2BVHfqw%2F%2Bz%2FCmp5zhvSZe3e%2FkSOubt2EO3tExnWrrbsy%2F51x94%2BaWFa%2F84V1k%2Fbfx2Z1fWE0%2B2It%2B2zfxGEfAaBiMbBctRiug0CpIBLFUpyK2R%2BOumYgYrZB%2BcZAdoT4%2BTfM0CpsksEggGCxGoNUsV4J5sVpc5SGJE6pwxvIJgM3r97%2B1Kq1S7et2UQKUI%2Fv7znOCn%2F8jpW80ohvKaN24aOatFEFAx8XLFYDFYItR0UbkQMljuIiEgx5HMS0efW2pWtXPbVdGZb9yjruPIInv%2FsR3z%2F%2BEisAhMFkrmCRXGCB9uEUKgoomw16o95qEwxoJiaT2cDtl84CUP5G4XWJOTBmWLK8olOmNOjMKhUpWZWHK5LZgl9279229we2OBUX50kuVjv5QDo7PBwnsvrhWJF%2BYDIuVagZDxeFHOF1MEKbsBMEQS%2BKJjOVdXJ1BKw61EH%2BfeqSTzTz3I7ZA3Zuv%2Bwhshy3sDFL2TjctJR6n2SDsfFJ3A0I5ewXfAgugw7s%2B0XQG0SAfFVWHOEsr6TyphSHW5NHFc9J6Wa%2B7B3Dfp42HguHAUINniPlZCpQ%2Fl0CogDIrW%2F8u85iv7sGv8ZzGzYAxjwV%2FMCxTwobJQCTWU8HRPQeruaaXpRqestVdUOXso7dupeF7px4Z8%2Bed3arKFc44AIg51W9ch4kIIiUEocmSk4sBpCcj15oUDRJXYYExl37RmirrkIv55rLASYJJF%2BS3t0nopeptU%2BE%2BmLrLK%2BlPgQyid3mCBU6UP1rVz8R2n770zc%2FXf7x8s%2FNn9fvaFi3rmFHPfmMLWRP4lycho%2FjNPY4W82Os88wiJ34K4tdAIQjAOQkx8YArcM2PaAOjSZBL8uolzAJFFvGDXd8ej67P2AvKpUkOYghcnK7zl300RBcsExwzJ%2Fhbrd7GuYBwhgAIYtbTx%2F3%2Bd4klJ3gtKCQnGIz9InYZEzqG8EkjSzNavCB%2FcXYlcQshhyMsZrI6PYLWc3lOG%2FvlA4rHr%2F3uTFD3r38%2Fr%2B3fMKOke9W4oJ9G566u7au84CpOz%2Fct5R99wF7W6dIYjjnawrHIAh3hlungFOWgXoyzVKbHOr1eD19Il6vISsrrU8kSzbY%2B0QMGpdjgYh60zDTHJKHoyP4404pw27zB4o1o62gq%2BBLL299am8j%2Bzv774zj995%2FdgTOZsOfWr3rnTWPj2h8qGbo1%2FM%2F%2FkYYvmxfms7TtPrM54E7ns4vwBw0rFy%2FaNJjRRVTet31OgCBPABhongUDOCAzuE0h6gnxChToCJ1ulB0iH0jeqvscFBZotflk%2BhMQ5oJDqhrC%2Fl%2F%2FFxmAUlGYeK5Z6Jl5MDec2yJQdc%2Bl5ViNduL1avoZ805eGll04jy6COKheT8S%2BU6kQwdw%2BlW6nPpXF4qtEoBziwAye3mMnRLkqlPRLqZdQlsKxTcLghkqhzjrLL5M%2BWgUwldSkjbL1HPLrCf51d8MHbv66zu%2FmcGl5Kz0YNZ0%2Bmcf759kbEB29qGGrZiYWop2b2R9fYqnKnlWOVzqXqgNfQIB5LtRr8fQLLT7CyT0ZLaL2K0WFzU5e0TcfmojkckcgvcyhJ4pNlr8Bd63VyEhIbiGhfIBFGTq8R9lqcWB2Dl1G79Rn%2F9i8n08OU3L%2F760UX2E369YuvqVUPrI9VryFR8CXc5V%2FrYefbW7svv%2FYNdxUHv%2FOnFVQ1V8yse2Dde0UcAIY%2FzU4L0sA1FEQg3jJT0jVAJFBlqbOOrALk1dCOmkuHNF%2BmpaKOYunHhldNAlZhEyFGpz4R20C%2Bc47Vmu%2B6gqXo9lewuq5TfXrLnZORk9Ink5JjAlNwvYvJBoF8E5N8qd9nN3jrmj7mOx8OPLDXqolpgwv0zZkpuzaeTynf%2BvWjNvnr22b%2BbsfDJR7%2Be%2BcL6dQ1bXlu3CDvOWfHIMytnrhJPHt7x4L7eg%2F48%2B8C5U0euLuu%2Ff8ozr1xteHTRssdGru8V3kwfeHTMsN937%2FzksLEzFdlO5NQpNsMLWdAtnJlizzQYAAQu26AljUvWZbEQlyuJi1Ymcr8Iaal2jjKNg5qJ9Ctqx02jMyDFKHJw8TpUIvjHKhXZQlZ0%2FIwe1eO%2B%2B6%2FRVHpg2mv%2FuPbBuguPMtfKLU%2BtuXfjkIFraEVzg2tlMuZg6O57%2FvXBP1C3kZ3H9od2PPV81RMVE%2FaNAy3HEcaokRS34Ta%2BLAA8XotzQMRiizkRDVfN87X0JXae6NzkVR6Znehb6J8XL%2BY3IKovXMjn0oEDMrkmmc2iXu9yGm0DIkab6hgTZklwj%2FT6FDccpXsmn6Rjlxv%2BknyrTFMR8%2BU%2FcF9%2BDiRwh%2FUCiChwdeXD58cDhSwsRjeikNNcTo83%2F0AtP2DDKLywji1nhxSezMTjgo9eVHOy3LBbJgIQ0OsEsToiIFRHrIjI4wHOlfxEz6a4ZOTXTLq9eTjdTofW1bEH6up%2Bg5GIBDhGEr2BkRNVlMZTa%2FP3HKVyrMMKrF3H%2FKPYUAWjlGsXaRnXrxTIhrJwqp%2FbMtnphFYWIdgGoLWtddqASGuPzdA7YhNaqFZLvVJSEa48LZwUd4YSN4mJ%2Baq%2FctSSXgtmD6gf2emV91%2F9KNj38bHd9l3PX0tq19dMnzFw3OSsgsWjj%2BzqPXn0w4On3e9nZ%2BNJLYFZ1yqkQ2ITFEM5zzwyA%2B1KLJ1kVwpAjsvSTgx3S%2BrQQeiisxv5Ky%2B9kGbnqUmllmSFEhOP6%2FG4ug6C2nJQUPdSt0td36R1IFMgbsUalrqlQAbw4KK1v1BwIH%2FudKqm8NCQbeMHP2LUtVk3rv7Fb4712N3Tt%2FDeaWvZt3%2B8wA7swe6Y%2F5cvjv3I1rHJn%2BAyhLM44ODVn14%2F7bBUDpq%2Fhpxb8c388XfdM%2BrU3veu%2BTws17Pv7O79aFvzMnvxc3aaHRq8sAZX4jgUsP7CfvYntoNhGYquJiAAAKJNPAIyWLjk0ojFqENR0SwqyILNaiG9I0bRYhFECoKD518xh6iplZYz%2B5W8H0OIlBsz%2FtURB6IHmnaT7itJORvb6A94cnbjGZYvHrnSg0zENwfPGTGddQIKJwCEo9xyW8ALGdA7nO0UUg1Wn89iEGQLjwd01iRrUlXEarWAxVcVsTjAWxUBevt4QnM9%2FgxBMbluwe4SAjxpj%2FmcgN0ef3cCt2IAhVVLsR%2F7%2BTIjjZjU9PTeY1ew4I9%2FOvhn8cCeI%2FNf9BnK2Pk3%2FkZ7TF00%2B6HoquhndauXPAGAMIdb09Oqr8gOu6jFpbdQb5IDekccglHi%2FHK2DL%2B4emRymUNIE3%2BRo3WokKfbtNP37Cs0%2F7rxjQ0X2Cvs2Rex%2FNNLuysbxBB7lX3FPmdvl64rwyU44QusOVSzuj8AUTgmDuEc04FdsYcWQQ8COJyiuSoiUsFSFREct4ppwc9rSBlA%2BZuAPZTBx2Az2Uo2CY%2FhIHysic%2F1z59PI%2FdU5CtWz%2BaJB9gi9gKmYebVKZgHgMq89Bc%2Br1GJWSSDAQXQoWAyS%2FreEUlCQsTeEUKRr3B03DZmUZBwxy%2F6S%2FMZmh%2BdTYZHt5OF4oH1LKc%2BeilhJj0UhpMlAKQ6pAbjTRPxSW45Q0CbAac3asPzwaNfrY9LTuyi2ilOhUvnI8SSohNapUJK7wiAaDLZe0dMgujtHRGdt4%2B8%2FHaphRyV9%2Brq5lT1xe9nfPc0a2IrDuKQL%2F%2F9bve3DrL%2Fso%2FQj0kbVrGXCYuWZWXjUhzzD7xn%2F%2BD6GvYau8Q%2BZe8H8LUY7WK6yuVQ2KdHBJ0giCCaTTraO6LTiQaJoshJV81RgnG%2FQbydi5f%2FDYnpjc2ssZGSRrI3Ws1z7dXkYQC8NoLNxfFqVpwaNht1OotVT4GzFDJj9GrpGI15%2BJJiPpxLMg0v6dVv9AONx9jclFWuR6fyFGvI0TNxvRC%2BUjHmnkjBViRGg4Ix0Yn6RGzLWkgJZRVRDKHw1TvRrzc2NpL1J6JN5M0l0dc5snnk4%2BjCBF0QIT1soQCCJCMFzgtw3EBXxTekkO0%2B0aio0pV%2FbIp9V%2BKIgpPrUZJOFCUev%2FJSmsuNBjuVjDK1gKQgp2DnLbuZlRjwuJUAn2MY4nce4COtZjadZSsCntbhh6zRomMm0bbpo%2Bbh4oGrVQLPOume7Uev%2FBCXo1IDsUG7sFsvcaytVpDB7jBS2aqjKCdypaUI4xPzabNJKZdj%2BWvNn%2BtsW4%2FRVB2xkGeEk582NR%2FnE3ZMwaxy2guAqFp99FZ5bu%2BIXqDW3hHqvLVNiOltBiTmueJRtpW9oZgjHIE9sBOOujo9%2Bv1%2Ffvn5h%2F9Eeb77LHuYa%2B94HIt1bArbxs6yU1iIuRjEAnYqZp%2BE8erqdUBRONnA%2Bc75DE6XQaiKGAySLDuqIjKVEtavhpXmSgW%2FmlplYChutYXx7Ay7tLsRZ5PWUePGL949euKoYPr7t1HOh2jK6mdXrVC5wHaoXLBCCp%2BZp8MeAIEa%2BOqmZtns6x0xC7KTL2yZM%2BMtlRs3J6I2pViG8q258sX7OOxndrH0tpz5ki3rzuqxivyf%2FDnN%2BWMCN1SGs8yIxKS3y0aDQdYTwePVm8EMVRGzmVDK5UepkSi6cntnp2Ku8ktw20SOf5bGNm4BcRXyGdhfcfkJ9jQ7%2FVXTzl2vfEZGRLeJB94%2Fzf4%2BLjqZjFi9cuWqJwDVHIFw29ha4V6a0wSQ5BSFrGxTGvV4uH30CFSfoEoJiY4mt0CGlozy8D%2Bo5jgx%2B6jmBbwy4BEI%2B9d3rHnZ0I%2FGN%2B7usnL1ey%2BxM389WLx%2F1%2BINHRbWXfoDLjz%2B6Z07su%2BYN73vyIFFvd959sV3qtf2nfFA35F3FQw8AoDgABCGcv7JvJ7iABSRUp1epgK3CYLmFeJ5qGYSi7k3IEsbWYFQyQrE9PWqJzjM14yPj2OHrLDdhgYZZafDrqOCmQ8UpzGUuFzsLkUnVHMYs4uij%2F2F%2FcJfFxrfee3ld8QDzf2vsC8wo5nuaa44%2BMabh%2BghQAAA4XW1%2FpMcNqJgMuooCJQqiPLlrxWvQhjgF8%2F%2FSgXTwej3O6M%2FNmF1x8zWHdVaFh%2F5uU3bnwXkmg1yXz6aT6km%2BQwpyW6LRdQn2Q0U9TGTotqUGOKqNclWAjJldKcyenwSZ0h8cyc75y5CT3v2xU42u%2BnL9p6UYpSa0Nne7yy%2B1EQ%2F7PaW6%2Fdbm0N88llHNx18ic5qnrv59RXv0YUK93QAQr1q9QNhhyCJ3ORLiskXFJMvtDT5KhocAz63Yu7rj%2FPIY0oTXmKdjuAkfHg%2F60QWROeQZnI4%2Bgq5M9oX4lybrUY5GWGrIBJRpnoDiChTUeOcJmE%2BqKL%2BGCJdcNEhlrSb%2BQ6T8%2BR887zoCZJPFyv1ZQBBscZ6pWKmQyqDLKBgMIoCNwcUdUrMcuuKmVot8AvlzU6qi9roq82%2F0LSFwoaNC69OAIQGdoRMVnSRY2mRUFAYoxcJlTDIOdBSfeJRD5nMSvEEu4B%2BdkS6svyKX6HWC0A%2Bi1c2Kd5c2XRy3h0mgYbo%2F4spg%2FKNEDuCzdrMFFACSacHOUgFevPMXj5rMb9CfMoLfOrSA%2BKF5b9KyigFJCgExOMgQVJYD1TWiQQEwrO%2BG5rpVFUTC3DfaPxsA1vG9pEg3dQ8jnwV9QJea2Zv0k3XKtUKsJLHIlEqwBgjmU%2FLQUfRp9mbCwCxTjhHHZIf9OA8AILRID2BkJ%2Bs1ZoxwDW1OMStBHU83G1fm5MZ0%2B4QzhUdK3f33F8MRKk50lPCUEXzoVc4K1NnTEvz%2BRw6yqMpYkzrFSFGI7jd1ooIt4LJFRHRA24o%2F98LVH4tX7NllapJZ7zS6LZn8QVeLKsVKjrQrxv43GPPvUychyc%2FVveH0F3HR77xCrNs%2FmPDWy89tOWB3js3Y1%2Bb1GPe7Jq5dxTuORZ11TZuHC3LD00fOhwI7OVWtVZygRPSeVUt0%2BD1Wq2mVGqiGX4zmNwOu8HOhccRljzgqoiArYV5DSXF1SDB1sddEk825YBijeRQiVcrvHAqyJ5Pv%2F3%2Bk0l%2F7GwKzGzQ6Wa811i%2FqXFjfb0wlJ1jP%2FDXxwMGLpdcbNHcsTuWvv7ll29fOPPJXwAQpnMOLxWGxbIaK6VuPU3ySmaOmQ0cHDPPzVmNGM9qlJ1DHgNzu6hmOGTcZXYV9f8d8HTbUOn8QrbvuW11Tz3swiw0oRPvyPQu96Sywe9%2B2mlNGRBlVqGU88fB%2BdM97E%2BVvGCx2CV7ht%2FhtgIgmqhez9mjt1FnRYR6bscerSYTkLTqvTcUDPLPA6osi%2BJOiG7ST%2F%2Fn2W%2B%2F%2B%2BTCTLMsNCxmTzdu3Ny4evOmNS9gNlr5647tA%2Frh0V%2B%2Fmfny%2B4Gv3r54%2Bi%2BfxLF0cN44IRk6hdOTDF4jpdzqtkrxGit4uRskyaUyyqIw6paZQyiRZQ632%2B%2BJsUuivNbh53Kb%2Bx%2F2JYp%2Fe%2F%2B7qFl8eecf%2FzBk65bfb7WQLstc2AZl1GMH9v3fJxx%2Fp2pttp%2F%2Bc%2FeGrS8oUksFoBYpHVxK3cVlMjkJ4UaSuj0GvhQMgKIsVkScspUqq0GtY98IAxWmOZS1p2QNgeJSXkPW3DX3mE%2BzrxreeANH3lObN6LH8KHopW83l9G3%2B3TugmsDC9PnPNkLgEKQuYQCzplcKIVu8HC4a56vQ5YpvYtY4ESnSHIzW6Vn%2BQzd72xlLbYWV0R0nXpFDJm6XKvOqvPk5pJekVxrm%2FJekTY2T7teEU9KnHUa%2Bzj%2F8pXd%2BrzbxD1uragaVBdAqDC%2BjaAUkrJv%2FOXKcGMXmJOnbhQXF%2FF3QsHJVnf87VhB3sSqoa%2Fte5X9jf3r7FdPzMgtC%2FccNOnTtwb3ZPb6ZWdOPLzh7amPD50%2F4z8%2F1T4uVE5ICkzt9ewxXYdBbfPqVx54ddvqMauTndXFnYfmBnY%2B2PS66ypEhs2ZFOn5IO08%2FZFvfn4cEPYCCD24nnuUzM5i0nFz7dF7vEkWvcMhVEQcNgOA3q0Y7xjlCatesVT2mALbtRUfM1P06cfm%2F%2BGZhgadoWD%2FjBMnyJuLfn%2Fkk%2BjrfHXnDOow4N5XP4gWAxDYDoDjxAtAwcr9tZ3PJCDa7Ga5MmImVlQ04%2F3EwqZSIqAJJVQc3NDQ1CG3TceObXI7CJWYU1Zc0qFDaSkAubaKudSxTZAEd4Q9TqPRrNP5kj22yognrLcC1z6ISzW5xSTOhATTljhb3v2det7Zv%2FeNGZnLt9g16B6h%2BaqNHZHv0yaP8TSV89QGJTzetxgMRqNOEkSdYHeYAGw2nY7KRje1xiKGfD5zeUyFyuJsRTUiQi0bdclYkzcER73JeuD5E2zOnB07dKSgy2icydpGlxLpQTZOcjW%2FXTo9NjcO5nNT4GQCoiASQHfca2tMVBjHYVRo6SRfJQGoCAfcdruDiz%2BgdwRo66xWHrfb4RPMPm5p0302p1UPDkUPuCLEt534Igi1bHVIVIgEzfAqepHh1bRDypryyOa1DVNmblnVsDhFl79rIuIAXcHhmYdfJicWLNj3cnSLcv%2Fzx9HjQmV99dDDg8e8%2BheuMZq2cnxdUBBOApeiri69x23S22xcWW02g%2FV2ytpSV72Jmrp7m4JG6NDUt95RNPXwJ%2Bq8d0XUSWM2dhSfU9EknsU6wSyDnOwzeLgds1GbYvxvmcVylSHFilGFxE4PYRT74fKaf%2FwOTZcvobX5lZ3PPffii88%2F10Cy2I%2FswyeR%2FAFNmMfeZ1f%2F8rfzH545p1j5vdyW1apU%2B6E8nOEzCrKsS3foHJkBwQhWq7siYrXprboUaHXDzMdZ0GLBqpaeO2hPAhMUr62Y%2BgRHrThpU8Niry7c%2BPBf%2F%2Bf7yzvryabGFc8%2B6xowcMRg1kUqqh9azT5h%2F1GcNr14%2BGTWl29fevfUeYVXHNNSlVexqMKW6qHJyT6bL8OfnOK1pqalecxOp8wtv80MFRHz%2F%2BY2VT5yJ1l63Ul6r3vQ0njtQyL9GzaIW15cvXnjnI8uf%2FfJ57P0SQsajObpM%2Fd9mHXp3YunT59birloRDO2a6z%2F9T38eEzFCzE9okGOpw1ywy6zXm8wEF4DsZrB4FYtg03rc2nRkaE5IY15ZEfvjt4eRQtfaahz6rrsFoaZNlk%2FfTbaJFSenDQjlrnS6XyW1twOtIplrqLzeuZaEfHYJKq%2Frj%2F5t8pdueG5kbsG25Hfpq50%2Bj%2Fe%2F%2BtjA%2FbXzF82%2BdmN88r%2FevSPL3Z6ftEjj7Yds%2BJ13jSzsaHnpjbt7h4Uvrdr2aAH%2ByzaXLm4R1W3O7p2KO71FCCkX%2FuG7BQrwKPWJlwu3jPioEKS1%2BC0OXtFLGGbVeaCkj1xU3kqIVjV5ONWqo52xVGXhtxKNuHyEMcdA5NSJuSy17ZurRiBXdlrw2vN8lyzHQeQZdU9%2F83mRWePngiAsIOvrjKhElx8fh86ZZPJ4DS4PSaz2aZzWdVV7TFqEbMS%2F4daVmW0rJcrhBY127EvX9TPNNQl6UP7Z7zztlAZLeMO6GMSvnpozV2Dj54hp7RcjgiVau%2BHAQ0ms6hHK6jhiJZl%2BNX0NFTicIYQt7ER%2B76ptuiMte%2FtYyP4oI%2F8o0cx9iPtrx6K5UpSgI%2FWinsblz4lNc3rsZipYBZ0yQ7ubnTuxCyYK7c2A1U2Z2Rlk8LhUHSq1BmbsoRPKeSfcBbp2qSdPsY%2B3jNxsk5nLHCcaHqjg0snBF7dzc6QBZ3OvHR%2FdK5QyUaz6j5l%2B4tJbXTp7trW9eRvHClACAIIOpXGzLBdFiVAUWlxQZ3RLaD1pnQ4ngmjmhUfYgteQT9m%2FJktwFVH2Cn27hFSQLxsGO6IfhU9jUdYD0AgfL1LfHw3z%2FsVMqnHK5jB7OBLO0UHfIJCVam1GRJo46KKOdrSUrLvuwFOnfnuS%2FtYTsWfl%2FStKu2xq3cXzuCVn9wf%2Bpn87mrGy5vtC03HtkAsZ6YPCZW3yJl7RUQr6npF0P2%2F5cz0oeZ%2FksHR0%2BTL6D5y31Q6eN685sPxrixetlPl5%2FYlJxu9AFbZRbmnpqlpTq09K3F7TdV%2FbpXcPJZTfEtxCddDvj7d3EK4ZLfHjedrpx794PFH58%2F49MClCxdM44aRZaRxE%2BaPjywnw0Zg4ebdS6Xj7NzZoCl4FhAvMxuZrfluorSo0RSABN%2BtlHzx8nKeJv3cDAiV7Ijaw5Oq4OwWDQ4H8UFqqsXiE2laujso0QScEzYFFXSDxYr7U7DPVNCV5Dj2pcRw4eKhDx%2BZ%2F9jjp45OnvHwVFIePIvB49LSPRvZ%2ByPvJcsjvOq5cRenZNg4zJn2qEvdpyXVQg6tAS%2FXAzu1JvkcpuoIdVglCaojEuTngS3pjfw38rSkOlOZT8nQVNOmbD9lKoU5HFg8t2TMUz2mRrqPyi95omTcisrHK%2FsMJSfuLFn%2FUKvsVinhsvqH%2FRkZSeoOPFuKdcJwrcuYCALV8343AGpSu4xtNPOWXcZcCQNO1%2FXt0PNKk%2FGszp3Ly0IVZPfVC2Lfxb3C5ZVhQDjK7fd5dVemazjNozNTahCARxo62irVJxKnwUz4SzDKgg%2B07k9ljt9sw2apra1KOJCldLR6NAOuqD89OWHNwpPHcdniPisKChY%2BtHv7My8sX%2FFdifTO%2Bxlov4LNXXfvoH7vstCH5z462QkQypUYSDzBpV4Zzk5y6s3mZI%2BdGD1OMS3dlORL6h%2FR%2B3xOcNr6RpxJIPa5uRWkRdPQzZ6Nm29lf5Lfinl2ypuduEqQxqONXTatnD0HG9jQblU05erVU2%2B99f%2FEEzUL%2B%2F1uGTs397MxS%2B7YtDz%2FxwtzsfO%2BU4psZqMkeIVtnHNByAibW0GmBSxtctLd7iwZeNSYn1gJchaVBku9il8r9co82Ja9clCxDnKwNLs0IXQ6VLV4%2BOLx8%2BeOq7t%2FUVXVgmF14%2BYuGrN42MKqeVtnzHh627QZW8mHj01aNmxh794Lhz059ZEFD%2FCHvfj7JZN%2BN2XbM1Onbd8BiscDEJT9Fw8MDrdzWGSj0WYS9URPTS6LW%2FYmGSwW2So5HBScbqsz3UmsTqvThG7JlATlWg%2B33RHrzL7lpjuGUOGj1uaovjBEKnH2HjYCJfY6dmGv72BvYGd%2BARu7j1wgZ5vZ3Ma57Ec08RslQBKsgaxUVYkkUR726QUqUDlmFjgmiYqtbgjFLYRiI5p%2FYebmnxVpXPuF1kupUABdeGdcdiE4pdy0Dj5fmkmCgNS13E07lbRqK%2Fn1%2FmCviN%2Btt%2FWK6OGGznh%2Fs4t9I39VVFmLztSUlwuwZdCiRC2l%2FKk33lG0dHD%2FqprTbw5%2FZmTxqMV9Z8yYvelw%2FcCqjf%2F%2B6K9P9H9t4KLl7R%2BcvmJR99W%2Ff6Ggbs3LPQbRnMF1WW0mD5q1NDW4IJjSKdy5prTH%2BklDl%2BfctXrZxm5rs9r27dWuY8e8oqHTRvWb0MVZPfnuKWXOMUCwWLTQ8eKH6u5TWpiTanKAI8lnpW495N90QCAhzctKeI%2FFxVnZpaXZWcU4pzgrq7Q0K6tYnFrUrl1RYUFBYfwOQGEM7xzvEdt5hxKeSwWDXmrNT0936a1esbSDZAKH1ZRuIuCwOYjJYXKk5AWcoRQByhNPBdhblgFRMxHuG90bnN2obu8KDjc3eYHM1py5DiFU2NqhNXTQOXMWz10weE77sRWvffDZq0880vHB5vXv4PB3les1tv2D02z76xP2YNvdezD3pT3s7N497JOXhMCeTTu3t%2F2dq9X3n575qfMjIXZI%2FQ7b%2Fu6brOGD0zj0rT%2BwD%2F%2BwB3P2xr8GQKCCushU8W1OdzqUhlt5pRQDokeJazP8rQwGh88D1EYJNTvSOakf3feGku9qVGpqG4xTV8ojfbXWGSt18iYUtdZJXEnDlt0%2FedPztWvHjM%2BbtnB%2BHauecmLUlAeov2bk6HHjJkhCcGFoRIcJs1jnI2OaCgRBqd8NhFraSI%2BCBGbICTupxI21YNTrBbMkWKwmUYegHGS5WbPRiyhjVuw2EAfPVEriM1kjLsUhtexzTK9lO0kQ1%2Fdk29mzvXB9yo23qh9EHfeDXhAhJWwiKKAki0J1RCSQr20nattixUJOXfM71Bv9Hhc%2BCdeuaV3LRAIbAAjXdUoX16r7wqGgF3iOLui5Zpn1JodXKu1gsnFoi9Pi0DmtjnQHAR63E4fT4bythikCCP22ZKVVoUS%2Bhp0Bqm51Fnr%2BL2UjHz5YPXLwfRNx36B%2Bl3eeXrwWxYbNVy%2F8n%2BpGrtwd7tNtSfXsNFaLo9jTdPZ89ub%2FpXB47YrkEiRpzW3r%2BoJ09UfBJLnmAoG5dBi5LJ5U83Z%2F2GIGp7L7nGwzHPNQhS3J7yWaAKe27LkytvA6c%2FfPn39g4Oqa%2Bfun195VPX3qwLunC2vmH9i%2FoGZlTdOCgdOm3l0zdZoiv%2FGASic8yQYLAMhwBiA6Q93NqCLLub9OUmpcstOLaHGCwAsItnQvZqjyadHEUVx6cz%2B0JMt%2Bsjy645vIQH91edGont0XbPj9msiaPXiIVI2%2FNHhk35IePbMLh0yeP6V6%2FZPPA4KflKlzBqAsnGkVRaCONIPUOstxn%2FMhJ%2BnrRKMzxUmcTl2yP92s88eVhKvIfTe2KDHRmKtlyd%2F2PpPpA3vsPbRzw4w1sz%2F8snbmA6Or7%2Bw%2BpUPP8mXDl2wVvqx%2BwJu%2F%2FYmVHWb32L5q0oAeXXrkBYa2LZl5056LnkfvwhP6xD0X5YAIN3pyAOvaT85494494cnCD133dnN3O1oEqNZDegiV4IHicLJoMOhs4HS6dC6%2BLeC2ulLMRKks6LWkMWHX6XqfaELKyMnTOhsGs13PNCxJNkz%2BZ%2F0Qg6GhAeewK698pKaNLwyr2caOScrsU1mzMEJygRWCYYcgIoBopDa7TidSq4jaQa%2F8RJkG7MortqVTEvILI6Z9PL1rzacn%2F%2Fov0pY1S3t%2FraYhx5WrKDBA2ED6Yh0dqvitsEECMJuofkCEQsyAJOqq2jzatUOseZR82L1nz%2B7xMwlZzIVNAOBQIge7xQhgUfrILXa7jtog%2F71CzQq3qDNoZYbSkOzBpo31obZtOw24a8BDQx4ubWIXRk7UT9S1Kckrtu%2BbHgSEvqQKP1d3kPleHwFKDSZuX2mGBGlK3sc5EGO7FpnEzw8MXLlQ8pQsvpNv4K4ld9471NP2%2FhFAoDt1kaPi26q3zgo7lONnEnBvHfMfbr3iP964r4XTTjgzJSYsWHJ0V%2F3qF3eu3%2FB8lN07fsKwYRMeGCZM3nHw8LPP7T%2Bw%2FTH%2Bb%2FYjjwCBau4hdsY9BF%2BZRr1AgMrEoJdu5R%2F4fBhELEUxdqM72c5aTGef1%2BIQVnvjPTGxCb3wfhzek01IufGW24c%2BAOIZzq8gnCYLACAbHrsGKMNHNDV6EPR%2FosTBA8ziYuCw7Tjs%2BThseQz2CwV2Ou3PYeV9xMZBVchkAMkvnuAQM34FFf4CxEZ9KD5qXmxUIBBiM2mNMBxSoY3Sba1zpQWwlbVVwCXk5EIqmmhqKj93lzEgkm2zG3tH7IEWecP9w%2B9rGZ4ohslCYnXDUm9MGF2J0ihbnJBfkf59Rs7q4vv9Y9X1ozq9%2BdbRTwPhSMnYbk2zOnXtXqqkXKHH1tZM7NOvw5ip2e0XjzjcWDEhMjB%2FyIz70jFvcU%2FeGRvmVKrdoPJ0bltbq9R1v%2FYaDgTdn4hNzIa84ltA1MLCGETS7SCOQSAGkdoSIv86xGsg3HKMrOsQE6CUQxiaKGmtgtyAkWIwIMNxKIN5QK4xAIk3MIIVnNA%2FfAdPM%2BwIOhPaRNEtuvROycm7kHm7iMHM7wabASUqOtByowkglmHm5an5G8bOiYau9y%2FSAF7vYVQ2zqR5UUeUXdxLDtMT0SMkNXqR9Lhag0cfURpetbZG%2FAvZr2jRHOZSOkc5ztkqzrMIAf55rM9N5VmbON8PqhxBs8aRmyFqoTwG4b4dxLFrV2MQyS0hsq5DTACHylWC%2FhhXgUA%2BgFip9id54Z5wod3t1glmAKcgCUk%2BrogS11erXC6%2FJJ%2BWL8jcIsuyoNfbqiJ6Kri17tNEXW55EDWhHZV7uVhLarxnM5QhVqpNqbM3bcJ9eBf%2Bbn%2F07S9xNlt4lIyKtaWSunqyntWxHSQcba5nhhhNYrmqS%2B3jurSmJdWx7jiVLwUx3sKsmLb5bgdRi4YYhP92EMegKQaR3RIiX4PgeGy65RhZ1yEmwMdxnW4b5z7CQrQJJmEDGMEX1st6ino0mXXgy0%2B0x2rMHLeOu0ewbTh8BHua7RiLw9m2MThS2DCa%2F3fbaLyfPTsaR%2BCIsWwrAOXzv877434CJ6RAQFkZnnRvmsAPExtcAA6rqFMCF0%2Ba32f2945YHTpRoDazQHnjnES1lrm3%2BFq4%2BYgL%2Fygm0lglwc7fxSoM1BZEj3qKzovZ1zsLv1479tEH9ykddGe2jnx04rGmh6Mjpu%2F9zy%2FNwbFk68SdWpPhmOUDNr2FDyl9dMMXV699l61D26bmvgOVZjp2ZRN9qTc7xVdOrI9LlUxpXLoVMfk7Nb7fDFELp2MQKbeDOAZzYhAZLSGyrkNMgA3xlRNMtEfCbHWUTvF5CmKjOFSQeO%2FfrHjvH9%2BpMOtFUbKDBB6vWeALiC8fs96sl2LdkZoVarkRrHVH8v9lCDcaJGexM%2BzzQ42NZ9GHnuYrO3mL5LvvUdvFy4zXWq%2FB6ei%2FV%2B5Y9yQAqv0oW6R0aK94ppxcMTUAXpMJUu25YkGhw5Hbrl12RaQd5LrV3S5tj%2Bvm0xpaZCBL2vZIQjWCo6Q2%2F2lnOTKUqE%2F1UYJv5ZAOKb36Lxv32p%2BOTCrfUnn27ofnjujZq094yVz2TcPf%2Fv7%2B58IPi6dX3OnPyC0L3b917LZdPTcF8w%2F0mVQxcHZN%2BcTisqHF1YMuXO0r7Nv3562c52pXkOTnPL8TACXovgLUVWlXOH6L57V56vN2t3t%2B7FP1eajFc%2FGz689fe%2BUW3xc%2FvP58whegruiOKsCNGRZehzj%2BcwyiTQwCqAIhKbtXOVDENWdkOJQLre3tedlIaF%2BWlJTe3ghi5y4pbYNtKyK%2BAqGgV6RD66BdECyZQU%2BxzqKriLgsNtBaO9R97viBxZsNL1corarUot3Jy%2F%2BqHSkOv7bLFExMz5TiAMaaVIb%2Fwg7NmPnUc0VVb4%2Ba%2F3xO8a6Hj%2F0reqcOO967tWbwurHswpy73lz03Mt7Jg1ZtfPpwzvoK7OWGon8BOY%2F%2ByddrEUqp%2Fie%2B4eMYP%2F9%2ByRWGwjyVpav5k5sXH9%2F5MVNo2XdQ6Sw4ektO5V1zXc4lW4kzreeMU%2BJFaqnVDtxVIn1ikl8vyqRVppEbn5e21993vp2z4%2F9rD7PafGcS1R7PsEQk1d7TaLX%2FgqAo9URXolZHHYXKGOgqI3xIgApTICovZYRgzDHIa79iUMMSoA4xl6IQTg0iG84RDrHQ4OYwA4CqBbHZ9d89VRlx1zyq6euqsJ5fsnUqhXwYN5jsTttkj7YRp9eETFSj91nsfLIR0%2B9LqSttY3QmLJw6%2F3b430QyITiIlAqxdlBMcj%2FlHpUk%2B6gRVqnV4kwil39%2Be%2FsK5T%2F9sUYXdkp9n3vr4YN77ll3OW%2Bpzc8v7NpC3vppe0vPUtC7Ev2FzR%2FcQmlWcInr25%2BcGHXgtrefZ6cNHMlm8b%2BtaaRbXjh4Aku21jXgbraqmOrzaLyJC1RNqNUrt0Vk%2F1HquySb%2Fe8drD6PPN2z4%2Bp45Ngi%2Bd8fu35a9%2Ff4vtcJtrzCSkx3Wh3fS2Ph2YhR9gJVO1CD4WTPAaDTSACKjsZTifKZjMqJ%2FQQ8tX1yhOfG8nPjUN6iccXE96Pp8ejezqVFHXsFCrqot3J8iefZP%2Fq3KW8Y1m4nPwYfwOUY3tEGCUsjvv7PvxEa3orl8vQ6iZn76u47uxt1M%2Bb2Kjnf3P2ZWVxBdGcfXw7QXSpTl4Si1SnX6L2X2yaUjNt%2BDw0Xd40o6Z25NzmV4rxTJ9pvAljfYjl95r63Iuxboyetf0XbEBQGjL6zuy7cMOvu8aRRcWffLRjTHRO6DzXjNjutSq5e2KSf0PVDI8mmZuf107VNOfWz4851OeBFs%2B5ZLXnE%2FyxtZarrfrYDqw6wr2xGWIjpKsAWu%2BI2t%2BVyXex0jOkFJfNZpfsrQMOsKeYPHqqT%2BNdjB7q5euvRZPnb3oYUWsXUUomXo%2FW9JUVbx7J4HugOKR748Sz333%2Fyd8fMwk63mSElTs38OYRzF9LmyID2Efsvwpjn83sV86KdcDaFQ1NOXQi58u3ce%2FZMxo1nF6Nmgn7Y%2FTmxejV%2BpuEyuv9TaJArLfsb%2BIw6gkU6UvxFLggHe4Ot0uSrE5nKpjtqZKY4bc6eDxpBaOR51hGGj%2BVwg8UUAc4b5zk4det2ia1fWVJO2TlvZF9aafq7NnSl1EYN4y9zJ7BYRgeN5RaonxdR8%2BRfs09fmXXEH%2Becs89LqzDiTgeF3ljSZmwlZ1m55QTGn6hNi32qy1yujAU0iAXCmBQuG26zkI8nqx8t7tVlk4oDOW1Mbbh0RHvSCKixdiunWg32pIyxcyKCIieFj7YoVjVRAeseV9R9a0q5rdyvYktTFkxnyvWs%2FNzup6pu8B%2BROnrBae6djz2%2BInL0aAOq4Y%2Fe8%2BQDVf9G154buPm5xvWCb3mrjKRjN%2B7vp4xEwtQh3q8Y%2Ba0KbPYz19MYDO5tw1mkLIPz3985rOPP%2F10x9NP7wBEE68Q7pH8YFF6wGWwWXmN0KJs3CSfKkwsE%2FIgzx1QzhIE0DR3nLfB89CcmUMWLuFF2u%2BWPJGTu3C%2Bt3TBoiIAgpP5iG2lhdp%2BkEMyxSpMejflw753u9KSrHUfcfpp29njxj46a8zY3z3YPRTq3rmsqJu4b9TM2lGjps8c3qFLlw78AkQdn%2Bk78TN1N5wPn%2BSzg2gC%2FnKrZc73En4mKLYb3o4vKU6BwvQ0olRTQpJEXXkDB%2FTOLAxZRpmn39tucP%2FKjIL21tHmqcL5rLZZnbvMquO3Tl1n1aldEci5Ff%2FFEyCCePMvngykw%2BK%2FeMIh5f8VUtYgffQ49lB7%2BR0HUNTpQenhP6WBBkscHEs5y%2BQZ1WF29yx63DMUTVyicNM3RdTpRZly061Rq55Od5RisXIk%2FbGKDPGARzmLjqmfcouq%2Fe4LkcAKAEQZizSpY1khOWwS0KwXbHbQUZP2M1%2Bx3pUgbyrhA%2FvjeGG9tcNjs9M6maNnb2B4FnXTeR1Tw7TF6DZldL0ZRcHuMIs2WRn9LW10DWe%2Fei9JQJ4ELUkjOsxJ7m6%2BQYbnXvbTY2Ow6D6FHh%2F7lTTBZZSVLOtqB8g4iCCHzeZK%2BdC1Y38ymWJ3vb5SBnteXszG7cAfyXB6EYzgPBD%2FURrIP3Wr6u%2BOqQ9OmDF94qRp5JtZj%2F9u9sx5C%2Ficym8TiHvgB8gGOwAEwU4c%2FM4nELJA1RaoJelK5ZPTbBAIlYikk0WuCInpvPM3e2CJ%2B16ASv2UpGqjUBAIkMRRWhRNSeqtK6QAyGYBkJXxUyYgEkE7ZYLxAQJIVjbPWkkXx4%2BZIJRzr1gnnuT0TQ2Xp3rTPZ5kI5Hl5NZ2wZDslYJtjN4kb%2F%2BILklMTUvtHyFp1rT0tPw0qqdJaUlpzsxM6BvJlJ0W3iDhg5ZN3bwwdMsfKruRW2ZQbuRlt9evdcorVpPyolGwuJT%2FdUDsCHUKOz4AWfRHQvA065Z1snHLxtW7%2FoddaNewgZANO4LY%2Bn9OPN%2BrQSxmD80rC7ed1%2FRm9%2FpuaEacl3tH9TwUsfXIpYPVzprl6o4iBXdYT0AUtDAtYc3y%2BEuJtrjkUwGEVlI650ylKvE%2B5ABA%2FHNTwuf9lc%2BBgItUcf0%2FAgZwQedwuks0ypTyaYjSqY%2BiqLe60l3E5aIWOZ1mxPuV70toergeGwR4g0v8V2eKi0otVJZJ05xV7GHcsHQO%2B0ESk9LSjDup6913x%2FKzVKdeX9THFGzb1v5TDDfpQ45bECoJ9%2B43cBcf0nCXXr%2FF8%2F43notvxJ6rVEnqc1TWG05X9cp%2BAAQRKWiHl2Knck80KgqljCAC4Aq1QvJpPHP6XaxCImp1FiUv6pwAUXstt2Ud9NrbHGJCAsQx9ufEKktsFtJBzroOMYF9EK%2FV%2BGK1mv8PflNJUQAAAAABAAAAARmahXJJOF8PPPUACQgAAAAAAMk1MYsAAAAAyehMTPua%2FdUJoghiAAAACQACAAAAAAAAeAFjYGRg4Oj9u4KBgXPN71n%2FqjkXAUVQwU0Ap6sHhAB4AW2SA6wYQRRF786%2B2d3atm3b9ldQ27atsG6D2mFt2zaC2ra2d%2FYbSU7u6C3OG7mIowAgGQFlKIBldiXM1CVQQRZiurMEffRtDLVOYqbqhBBSS%2Fohgnt9rG%2BooxYiTOXDMvUBGbnWixwgPUgnUoLMJCOj5n1IP3Oe1ImajzZpD0YOtxzG6rSALoOzOiUm6ps4K8NJPs6vc%2F4cZ1UBv4u85FoRnHWr4azjkRqYKFej8hP3eqCfDER61uyT44DbBzlkBTwZD8h8%2FsMabOD3ZmFWkAiUs5f4f2SFNZfv6iTPscW%2BjOHynEzEcLULuaQbivCdW5SDNcrx50uFYLzFHYotZl1umvNM1tgNWX%2BV%2F3gdebi3ThTgVEMWKYci4kHZhxBie3TYx3rHbGr%2BPdo7x4dIHTKe5DFn%2BO%2Fj%2BW2VnE3ooW6isf0LIUENvZs1gf%2FLHojJwdpplCP5gn%2F5gi26FoYa19ZVFOJ6Sxuoz%2Fq2Ti20IKVJdnqvYJwnhfPH%2F2f6YHoQF30aZaK9J8T026RxH5fA%2FWPW%2F8IW4zkpnIfoFLifGB86v0ffm5nbyRs5iaHR3hNBD0HSfTzoPugRM%2BhdN0x052KoHLBS0tdgpidAiEesDsgWYO73RWQz2LWIwjqnMe%2FuYISQtlbyf2NlT9Q9PoBcBnrO6I5ELoMeyHkNnIXGdv809H%2FDXNOTeAEc0jWMJFcQxvFnto%2F5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56%2F%2FCz%2BVaqqrat5rY8x7xnzxl3nvo%2B27jFnz8c%2FmI9Nmh2XBdMsilrBitsnD9rI8aiN5DI%2FjSftC9mIf9pMfIB4kHiI%2BhWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW%2FgLbzNbnfwLt7DJ%2Fp0TX4%2BUucji1hCnY%2FU%2BcijVB7D46jzkb3Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV%2FEaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK%2FUVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN%2B59b410iF0sUFO0l2UJtY%2F8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC%2FLzdhmV2XBvpBF25IlLJOvEFfRI%2BNjgCFGGGNK5Rs6Z7Ij%2F45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j%2F%2B58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go%2Flfr05F%2BUa7CCzGx10sYA9tiWLxCWs2BfyN%2BIa1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt%2FQOZPfmY3%2F%2FSs3Y5tNpTpL9ZQeGR8DDDHCGN%2FwbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h%2B1FeZTKY3gcT2KvTWUf9pMZIB4kHiI%2BxcQzxGfpfA7P4wW8yG4eT%2FkYYIgRxvgb9TWsYwObmOAITlI%2Fxf7TOIOzOIfzuEDlIi7hMq7gFbyK1%2FA63sBbeJtvdwfv4j28zyaP8QmVL%2FimL%2FENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI%2FhcTzJp73Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe%2FgY%2F%2Begvq0YCAEoCNa1n%2BKVyTUl3Q0uIhoe%2B3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK%2F7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De%2Fxu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p%2Ff6oI%2F6pC%2FKSxvf9F0%2F1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu%2BkbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd%2BR3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI%2FWN54IuxXFS97oH58%2BMBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd%2B0lSVW5nNIL3nF6389h%2BY5NG3Thja0oQ1taEMb2tCGNrQn%2BQwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5%2F5wle%2B8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In%2FHCuNDGO%2BNOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I%2FD4%2FA4PA6Pw%2BPwODwOj8M%2Ff7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM%2B7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6%2Fh%2BP6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q%2F6H%2F0H%2B4P9yfPz82bdm2Y9ee%2FT355bS3%2FdivDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M%2FRm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP%2F84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y%2BrH1I%2BpH1M%2Fpn5M%2FZh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0%2F%2B9sBOGnTDshOF%2BDndyXG7k7vfh9%2Bn35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc%2FbdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6%2B7P%2BrH%2Fqtf6%2B2Z3u2Z3u2Z3u2Z3u2Z3s%2BO66jKoYBGASA%2FiUFeLO2tqfgvhIgVkOshvj%2F8f%2FjF8VqiL8dqyG%2Bd4klllhiiSWWWGKJJY444ogjjjjiiCOO%2BPua0gPv7paRAHgBLcEDFOsGAADAurFtJw%2Fbt23btm3btm3btm3btq27UCik%2F1sq1CH0I9wl%2FDTSONInsjxyKcpGc0VrRNtGx0dXRF%2FFpFiV2KbYl3j%2B%2BJz4vkTaxKjEgcSXpJzMm6yb3ALkAnoCV0ARLAcOBjdCAJQJqgWNhJZDT2EbbgTPhz8h%2BZFJyDbkFSqgVdGh6Br0BhbFFCwHVhNrj43DXuH58V74WcIkahHvyDRkLXIGeY18SxWl%2BlMHaIVuSc%2Bh3zHpmNbMJOYuy7DF2E7sFvYMJ3Clf%2B3DHecNvjm%2Fm38g1BYmioxYS5wqbhZ3S0Wl2tJkab50U04pl5CHy9vlmwqlZFJaK4uVnco55YlaUK2kNla7qEPV6epi9aMW01jN0zJohbRZ2mptj3ZWu6e91wE9vT5LX63v0c%2Fq9%2FUPRiZjprHS2GmcNG4ar8yIOcycZC4yN5mHzMvmE%2FOrhVq6NcCaYC2wNlgHrAvWQ%2Ft%2Fe6w9115r77XP2fecrE4xp65zwM3lNnZnuBfdZ17E071sXj6vrTfP2%2BHd8F74lJ%2FeL%2BHv86%2F6D%2F23Qfogf1A%2BqB10CAYGk4LFwdaf2C%2BJfQAAAAABAAAA3QCKABYAVgAFAAIAEAAvAFwAAAEOAPgAAwABeAFljgNuBEAUhr%2FajBr3AHVY27btds0L7MH3Wysz897PZIAO7mihqbWLJoahiJvpl%2BWxc4HRIm6tyrQxwkMRtzNIooj7uSDDMRE%2BCdk859Ud50z%2BTZKAPMaqyjsm%2BHDGzI37GlqiNTu%2Ftj7E00x5rrBBXDWMWdUJdMrtUveHhCfCHJOeNB4m9CK%2Bd91PWZgY37oBfov%2FiTvjKgfsss4mR5w7x5kxPZUFNtEoQ3gBbMEDjJYBAADQ9%2F3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw%2F3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn%2FwKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm%2BOyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36%2BGappx57oq%2BPPpurv34GGGSgwTYYYpihhhthlJFGG%2BODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG%2BBtFBTBAbxAXxQYJC7rvjrnv%2FxpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp%2BaVFxaUFqUWZ%2BUVQQWMobcKUlgYAHQ14sAAAeAFNSzVaxFAQfhP9tprgntWkeR2PGvd1GRwqaiyhxd1bTpGXbm%2FBPdAbrFaMzy%2BT75H4YoxiYFN0UaWoDWhP2IGtZtNuNJMW0fS8E3XHLHJEiga66lFTq0cNtR5dXhLRpSbXJTpJB5U00XSrgOqEGqjqwvxA9GsekiJBw2KIekUPdQCSJZAQ86hE8QMVxDoqhgKMQDDaZ6csYH9Msxic9YIOVXgLK2XO01WzXkrLSGFTwp10yq05WdyQxp1ktLG5FgK8rF8%2FP7PpkbQcLa%2FJ2Mh6Wu42D2sk7GXT657H%2BY7nH%2FNW%2BNzz%2Bf9ov%2F07DXE7QQYAAA%3D%3D%29%20format%28%22woff%22%29%7D%40font%2Dface%7Bfont%2Dfamily%3A%27Open%20Sans%27%3Bfont%2Dstyle%3Anormal%3Bfont%2Dweight%3A700%3Bsrc%3Alocal%28%27Open%20Sans%20Bold%27%29%2Clocal%28OpenSans%2DBold%29%2Curl%28data%3Aapplication%2Ffont%2Dwoff%3Bbase64%2Cd09GRgABAAAAAFIkABIAAAAAjFQAAQABAAAAAAAAAAAAAAAAAAAAAAAAAABHREVGAAABlAAAABYAAAAWABAA3UdQT1MAAAGsAAAADAAAAAwAFQAKR1NVQgAAAbgAAABZAAAAdN3O3ptPUy8yAAACFAAAAGAAAABgonWhGGNtYXAAAAJ0AAAAmAAAAMyvDbOdY3Z0IAAAAwwAAABdAAAAqhMtGpRmcGdtAAADbAAABKQAAAfgu3OkdWdhc3AAAAgQAAAADAAAAAwACAAbZ2x5ZgAACBwAADiOAABYHAyUF61oZWFkAABArAAAADYAAAA29%2BHHDmhoZWEAAEDkAAAAHwAAACQOKQeIaG10eAAAQQQAAAICAAADbOuUTaVrZXJuAABDCAAAChcAAB6Qo%2Buk42xvY2EAAE0gAAABugAAAbyyH8b%2FbWF4cAAATtwAAAAgAAAAIAJoAh9uYW1lAABO%2FAAAALcAAAFcGJAzWHBvc3QAAE%2B0AAABhgAAAiiYDmoRcHJlcAAAUTwAAADnAAAA%2BMgJ%2FGsAAQAAAAwAAAAAAAAAAgABAAAA3AABAAAAAQAAAAoACgAKAAB4AR3HNcJBAQDA8d%2BrLzDatEXOrqDd4S2ayUX1beTyDwEyyrqCbXrY%2BxPD8ylAsF0tUn%2F4nlj89Z9A7%2BtETl5RXdNNZGDm%2BvXYXWjgLDRzEhoLBAYv0%2F0NHAAAAAADBQ8CvAAFAAgFmgUzAAABHwWaBTMAAAPRAGYB%2FAgCAgsIBgMFBAICBOAAAu9AACBbAAAAKAAAAAAxQVNDACAAIP%2F9Bh%2F%2BFACECI0CWCAAAZ8AAAAABF4FtgAAACAAA3gBY2BgYGRgBmIGBh4GFoYDQFqHQYGBBcjzYPBkqGM4zXCe4T%2BjIWMw0zGmW0x3FEQUpBTkFJQU1BSsFFwUShTWKAn9%2Fw%2FUpQBU7cWwgOEMwwWg6iCoamEFCQUZsGpLhOr%2Fjxn6%2Fz%2F6f5CB9%2F%2Fe%2Fz3%2Fc%2F7%2B%2Bvv877MHGx6sfbDmwcoHyx5MedD9IOGByr39QHeRAABARzfieAFjE2EQZ2Bg3QYkS1m3sZ5lQAEscUDxagaG%2F29APAT5TwRIgnSJ%2Fpny%2F%2FW%2F%2Fv8P%2Fu0Bigj9C2MgC3BAqKcM3xgZGLUZLjNsYmQCsoGY4S3DfYZNDAyMIQAKyCHTAAAAeAGNVEd320YQ3oUaqwO66gUpi6wpN9K9V4QEYCquKnxvoTRA7VE5%2BZLemEvKyvkvA%2BtC%2BeRj6m9Iv0VH5%2BrMLEiml1XhzPdNn3n0rj6%2FEKn2%2FNzszO1bN29cv%2FbcdOtqGPjNxrPelcuXLl44f%2B7smdOnjh09crhe279vqrpXPuM%2BPbmzYj%2B2rVws5HMT42OjIxZnNQE8DmCkKiphIgOZtOo1EUx2%2FHotkGEMIhGAH6NTstUykExAxAKmEqSGMFl6aLn6J0svs%2FSGltwWF9lFSiEFfO1L0eMLMwrlT30ZCdgy8g2S0cMoZVRcFz1MVVStCCB8raOD2Md4abHQlM2VQr3G0kIRxSJKsF%2FeSfn%2By9wI1v7gfGqxXBmDUKdBsgy3Z1TgO64b1WvTsE36hmJNExLGmzBhQoo1Kp2ti7T2QN%2Ft2WwxPlRalsvJCwpGEvTVI4HWH0HlEByQPhx468dJ7HwFatIP4BBFvTY7zHPtt5Qcxqq2FPohw3bk1s9%2FRJI%2BMl61HzISwWoCn1UuPSfEWWsdShHqWCe9R91FKWyp01JJ3wlw3Oy2Ao74%2FXUHwrsR2HGHn4%2F6rYez12DHzPMKrGooOgki%2BHtFumcdtzK0uf1PNMOxwDhN2HVpDOs9jy2iAt0ZlemCLTr3mHfkUARWTMyDAbOrTUx3wAzdY%2BniaOaUhtHq9LIMcOLrCXQXQSSv0GKkDdt%2BcVypt1fEuSORsRUwgrZrAsamYJy8fu%2BAd0Mu2iYFhexjy9FIVLaLcxLDUJxABnH%2F97XOJAYQOOjWoewQ5hV4Pgpe0t9YkB49gh5JjAtb880y4Yi8AztlY7hdKitYm1PGpe8GO5vA4qW%2BFxwJfMosAk2X9n9X2cVVfnA36pzHNHJGbbITj75NTwpn4wQ7ySKfAu9u4kVOBVotr8LTsbMMIl4VynHBizBEJNVKBAfMNA9867j0InNX8%2BranLw2s6DOmqIHBIbDfQR%2FCiOVk4XBY4VcNSeU5YxEaGgjIEIUZOMi%2FoeJag4mEB3PUOweCaG4wwbWWAYcEMGKn9mR%2FsegY3R6zdYg2jipGKfZctzINQ%2FvxkJa9BOjR44W0OpTKAskcnjLTcKyuU%2FSVIWSKzKSHQHebYW9mfGYjfSHYfbT3%2Bv877XhsIwGzEUaleEwITyE2u%2F0q0Yfqq0%2F0dMDWuicvDanKbjsB2RY%2BTQwOnfvbMUhiNPFyDCRwhZhdjE69Ty6FjoOoeX0spZz6qKxxu%2Bed523KNd2do1fm2%2FUa6nFGqnkH8%2BkHv94bkFt2oyJj%2BfVPYtbzbgRpXuRU5uCMc%2BgFqEIGkWQQpFmUckZe2fTY6xr2FEDGH2px5nBcgOMs6WelWF2lmiKEiFjITOaMd7AehSxXIZ1DWZeymhkXmHMy3l5r2SVLSflBN1D5D5nLM%2FZRomXuZOi16yBe7yb5j0ns%2BiihRdlFbd%2FS91eUBslhm7mPyZq0MNzmezgspUUgVimQ3kn6ug48mntu3E1%2BMuBy8u4JnkZCxkvQUGuNKAoG4RfIfxKho8TPoEnyndzdO%2Fi7m8Dpwt4XrnSBvH45462t2hTEX4Bafun%2Bq8jIzK%2FAAEAAgAIAAr%2F%2FwAPeAF8egd8lFXW9zn3PmX6PNMnPZNJMRRDMkzmDYgZMRRDCEmMMUPJIgZEepHlRYyIiNhRUdYuS4ksy9reLDYsdOmLLC%2FLy7L2CgKrrCJkLt%2B9T2YyYPl%2BD8804J5zT%2Fn%2FzznPBQKbACSTvAEoqJAdtUhUJpQYjBJVAUrKSkIOJ1ZUOEKOUGkfV8ARiPB7E72m87WJZF58ibzhXPVE6QsAAnMufI4H9XXsUBh1UpOJSJLmQNWqNsasLkKhsrKnA%2FT1HCF9PQzSAPYtD5V5PW4lmFeIK86EcCRbObLp2lGjGxpH4%2Bf0wLkjjU3NDSNGxYSMxbSdDkzomhE1SypQalCISvniob1lDuTL7injC1O%2BMr%2FxmeJtxeRt%2FiJviJ8mmrjFOr0BJCZ3QAbkQFu0ypCZ45HcRqNJQkiT%2FLKsOO02s2Ryudze7CxVUnw%2Bv9%2BtmKTcgEEymzPRlgN2e5rHaeOXyeeiisnJFagMOSsqSkr45kL8Tr450SfM5%2Fy1V66pGvBwTV1BcYcDEX67QjQkbo8cigTplyVI2OHh%2F6zdXHO4%2BiR6SjoxMPzo8O21h2tPx7O2lmylNV%2FtY5Nwubj3fXUA%2F8BuFveBr74CoNB84V6pSnFCLhRCL7g7OijfR7Oy3FalR49AcXYRFBnsQUcgkAYO6H15j6wiAGu%2BI%2BAo6pleFDAWKJZMX%2BaImNunWOpiskIVH796ewAqEzvV9gqX9nQ4Qd8S%2F1V%2FScSM%2FrmsTP9FfNUNIvzuVlRPMFxY5PB6fY6iwsJw3%2FJIOOTx%2BlT%2BWzaR%2BxYWecrR7fWFFanqi%2F33nnn9%2Bv%2BMvXr7mk933%2Fv5Gy3PrN6yZjg7WFV1D5s2oGoh7nx%2Bk2vvTrkeDT0HKlieXvvakkfecj%2F5uKnhm6iNHRk27a6bevTL%2BclH3ulVkX3cBTJUXjip%2FCDvBiO4wQ95PB6qo%2Flen0%2BWTRpofo8nLa04mB3UgpeX5PbMLEzzKz4%2FtapOlXt5a1llpXhN7FF7r8zJ37o%2FiN15Q2XhvsE8RdajOqwFyrwFGETXr%2F0F9u9dNnZsWW9869X1azow9qe%2Fkpc7D52mPRf%2F%2FHcJFrR1npvf9sWX336EO7%2F9x7lqeUMn6frt8y%2B%2F%2FZD%2FJjzecOGEAnxvWdzjpTAzWtHbGjRhlhdMXqvLVZSWnl5kpSoChLJVtcwXSPea8vNLSrT0dEnTegyPaZIUqIlJLnSKhAV%2FpfBuhb9EbE53bYVIM%2F3S45hfiZ%2B7th8IFPHN5QuXcscms1vF8kiAZ2qBsEEEFQX7FnJDeNy%2B8nIF2JLZ7%2F77DPtk3rJhVV9vefPD%2B57CzCF98cr82%2Bs631s4%2FvbxrKPf1XjT0Iqrh%2F%2BuafTMxR%2B9e%2B%2BmxqZnxzzx5l8embstxo7PeX0Ju3DjoqYJA7C611hyd3hAtH%2FzpD5jAAVm4DM6Zjj5C5WIAIu9DuxCIB0kuvEBAKGBbSTz%2BL%2B3Qm7UZjaZqCSBqtrN%2BVQgmAMTua3joeaMhBTicTt9wULS8PSj5x58eNk9Z5c9RUrRiPte3MTKzvyHRd5Yh9vFygP4yq3JlfmyfHG%2Bso1LyP%2F5yqgRNVjuDPclRSGvk7Q%2B%2FejZJY89%2FOA5sTT7ifVb%2Bzru%2FOEM7tv0EisFhErSJGUpbrBBOOo3ms0ypVZUVc0umUyqilarYrDxpN1aJrKQuykJwvwz%2FyPMUOCTXSqlRa6CiEzJy8U4J8DWf%2FjpM%2FeeOMZeLMKpxYqbPTyx088Oz8MKtnMuFqefm4gzAKEZPpUqpG1g5qivGRSjkSKAxWo2giJRKOFCysqS4vjNhQXCAa4Bxz1HEI%2ByNlx0FBextqOk9SjezW49yhaIHbGzuBtOggKe1wgFWVapDCXbdSNt5ghfoNCgMxLA3X1v%2B%2BdV%2Beg%2FvIsdR9MJYWVcS5rISqDg%2BCuVQQLkSiTc7QoHPANIGq49dw6wi7GwgmvujZoUrrSRNsaMLqjsmfjnkYu4aU6SlJZ28xECNyqt0mMrM2pBricBidueiNS5iDcRA0ir4h%2By4yQgGJP%2FDwLVF05IQ%2BW9XLoPLou6LYoTFPCnGT0jYkaV2kfEaBok8y%2B1kkYCeeDQnIEyQI2nUrlDE3kkDT3PzsfZhXMoxZHGw2OmTRl7w%2BSpLeQoW8gexttwNi7C6ewO9hD7%2FusTaELr8eOAMA%2BA1nJtTNAj6jJKAAZEs8WgqihJRgX9wJHOkYoXkf8iwR2RiKKqRRiitWw3lYdnr30cDzNae%2F8Tw%2F1L3sS5gFALINXpKDQgmp1pQxW86M3O8aoqMTlNtTGnSjATM2tjXEgCYfS3hKyuCkFHkzBeScI6WKhFVxLuD%2BEQLt4TkOo6CU5f1drrhvrrVly%2FdspDayfe%2B8EtQx7fuJG0HcbZLyyc1r%2B5qXbojtE1xa0dt4x%2F5c31r9hA6MYtP5DrVgijoiV5Po6KKs3MBOCVStFlgez8bG57v8%2Fvq4tZ%2FGilfr8pX7VqJm1EzJQGeg3j5%2FxX8ruWMbrG4oduFyXxMEFyQlkpkMeJTvhKbCMY1j%2Fo2ykPlEmSr335KxvYPvbZydev29P65KNrX58%2Bc92zfxv6%2BKil76PnU1Sl6fe%2Bl694%2F%2FzIweMjUO1ZPnH2TU3fxqa09%2Bl%2F6OHXAQgEAaSZuhddMDiaZ1epkRAzpTKAxyVzrnGh7JLreGi7qF1VqO5WvoGQ0DwF584uo3cpz4sCBzc9T9SAQPKgoqI082X2QfxhshCzXmZ5Jmoo6MvOYAk7gCWH6cudN5%2B98oSroZZNBoRWbuEw1ygDmqI9OZ36aJrbbTPYqIFmZrldRpdFA27ONADF4%2FHXxjyKYhkRU9LgYsIJ6e%2BpgHAkGUjkgUhLSBg2N9w3IMwpylMaKScT%2Fn6efcC%2BPLN8xActmMGOhu%2B4bH6EpsV%2FyAgOoO0n9%2F%2BHnR2B5h7hr455LAPJ1%2Bwc%2B1i1AYGhXOs6eQf4IR%2BuigYUp8WSlweZTnAWFNpz6mJ2u4d60kbEPGnUwENEvUTbVJbqTCjIAQJlPo8IXEUNdQEJcCAhMvd%2Fgvy8Q3E6TmsbErv%2B%2BZ2tRuuN%2F7f1X%2BzsNyv%2FvYhoN066sbVlcRuZiq%2FiWvuP7rEb%2F7LuhyPfsFPLMffdxfMnz7%2B1fu5qEc0RPdM6QIHLo14FgCDKRFYNMiWU1MaoAsLfupYpQwobhpDby4OfkoJ4iZQWPyy9jNLm8wLSdEtUyzvBB3lwOVwbLXYqnl6U%2Bo3%2BQo%2FHnp1ttBtL%2BihOZyBQXGwBS0Z9zJIGwfoYXGwTYYlLnVeWdKFwoCSqAj0%2FLqoW8qk7kShFiku3kK9cfCPVHyDedt%2FqpeyLL06zk4uXtU1DyfXfE2fPmrng0Ccjbhg%2Bflxtq7zz3ZUzXhrU%2FO6sjqN73mrbXD2iY%2FKzm89vbBp7Y%2F3VcwaOI3vqq674XdnlYysH1Ym8GajvcgekQQFURnOzZJfFEgyCCwqLtNy6mKZRrzd9RMyrUkMdR%2BNfdbfu7DIBzCIaw0J5kS16edcXuNOdBXwbyU1J1ewxtvTOqxtHP%2F3%2BJIOl3xOz3v0nmr9Y%2Bf2d8VNjp4xrbbm7jQ5mdazJdtYzasufW2r%2B83%2FH0fEE%2B3DTXbdNum1%2BHfd4stOSZuvMURh1OXnyAPjtnsaYXeumMPAnaOwXTOb4NVYT72PqU%2BxG7xcf6mPNQAQX6%2FIUcHKmcllV1UUlBRXFZdIaYyZNUjgzJ6Rpm8u6mKrApzM0vUgYbrTrbF2SFHbS18Xa5GhSmF5P7JYqZODSiqKajIK%2FVYNEqQIEZRigFxShVFwJURhGD6JU0ZlDP443kvW7ccNSPH2abWFfCns140peoYDeNeZHHSqlRgkMcp00ViJSV30QKhkjagSue7JMQH4304%2FFkrTgKC9Tjh69VLueUScBrhFPNVAUJJTKEur6Ce0u1dCFuorNZH28UayJb2IaDjjNtKWsWmioXPicrpB365FYFc3LTU9PA%2BB2dlqdhUV2QCMFCAazGmNBl900ImaXkg7mVCR4KJVkyfpRJFR5F86oRckaXOFoe0m%2F7W6YevPVY5uWvzf1w3P7vm99YGyIHU4139VjH6ob1tLvqqpxR9u2r5m2onVI9RVXsHUX9eMTLkxQdnCc6AuVEIv2VCsq3G5XOGzt77rMZaWBtEDvNOgN0au8hkhEMg3QTPzqkVUq5feAklS7rOucMleiPU7ivc6kQtuiYCqrfNTdlVF8fxLxCKgtj3iUQC44%2BjrzOa06UfyDSESH3x2j106vnpWmTXnhlT1o%2BUfT%2Fqt9NdGau79%2FZhf73%2BexCP2T2Pz%2FZefZXez6I%2FgIyv%2FEkRs7Yf3IFpM1FG27n5x%2B%2BNQ9Q%2FotPPTGQSQBH%2FPd%2F9Yf%2Fvjjne1sx152gh0p6f3eKHwYW3%2FEZZ93sA627uCCpcfMzwj7AIC8WN4IKljh6miAWKkBQZHNZgqip6CSZLOSmpjVSs0yBZocIpTouZRiZWGortKL8gsDiITjI5Uik%2BLHJ7FXiYTziRJnywoMgWdwNFstbzxXRcbikdvy72CqiPvXAaQznI%2Ft4Idczsm9VLdbktKzzeY83vfZ7QGDlqalDY9ZNLRSTbODPb0mZneCvyYG9BLcSxY9KQVDSTe5ArmSp7voCQYwWfE4HPqnwOu4AyOYNn%2FC%2FfPZh2fjx7C84%2FaZ8xev2nXHraxT3vDKpkVrHaacdQ%2B%2B%2FxGdXTuy8Zr4NrZo3PgNgDCXI%2FUBnh9eKI36VZeLN%2BNWnxscUBNzSKpskmtiJleyNBOvSfVEKuQRD2%2B0Iw4l2BUdoTI%2BZiikBS%2B9h9OfOtrxL7aJvdiOkQOHDrc2tEs72U%2FHmW846xyGi3DSZ3j9azd1FvUDImwoz%2BE2NIBd1OtGAIdVkjTZUhOTqWTlLbMzaamUcEELnGVzAbVA0BHKleew8ew2Ng534wR8gL3Dxq5ZjO%2FxGuQP7A55A7ubrcHDnUMBdY8RLs0Mg6L5BgnAqphMiBbFWBOzKNxLAnII3zehaKqJofOXXkp5iCsitPAkbol0bqDV8RN4ijmIm4tl7zK2BLqkUsalGqFvNN1AqVkBQDQJoSl5QlZS0MVSLhaCX7P9dHD8OHKMEwKWxLu8KBdxL6ZDTbQo3e8nNquVEFemy2DIsGlmjQdbOr9BNkt%2Br%2BzlsmTu1FB3wd0z5VlnstgW8BBwKLpv9YJL5RlPdMKNOALkU1L14E93sr%2ByVfg43vTxgZtW%2FGXnd1vevKGVHafhuOnyAlyMU3AcPjDybB377rOT591Y2mUHeYJu%2FUg004jIzW%2BQJFm2GGhNrMaABoNsUijK3QmbMnfKFN2XPIHtjr%2FNdmE5uRrDZG78Xj5t2EIGAOCFiawBT%2BozgRw%2BbSAGXiPLwM0MRsr79e4NCw4Rxa5IJL6kRnJurq0bOKEZy79hDV4k7gVL5JHn1l4AdgYS%2BtfxVS0wMJpjIcRkNiOAzUBl2cq%2FUrNZoXwP3VtwpgBXF1eWAOXEQAdVfSMRDKBcx1awhYvEZm7FB7CZETKxJf4D39CN6%2FHf8XkJ6VIlly6LPUkqBVCQArccJKJUl6GXoPq6r3PD1MsbzldfSPxvRcyR3dAvmukGo9nI1bbxUPHKisdJjEQxq9QGilBcN36X0mUp6hA6Y9DpEYujXuXykscVRBpkK4wudhzbcaSC07GdfUgtRrZEms9Wzok3cw1WSi3nqklH6R3oPr8kYcedOm6WR9NMYETFagVwUFlRVM1MVW5RVLtHv11adI%2FEnAKwL1KEcM%2FJO9nv43fpSiwh81U7%2BqQGdrQtXseFv4FZvycdQPQ8%2BVKfDHgE0jgAfBZF8RpdNTGjRO01Mer6daQROSBexQQy16Hxpkj%2Bkj3BXubXE3gz1vNr%2FPlDb76Bs9nSNzaSY%2BxxdivejVP5tZCj0mP%2FOYvf4smfoAvtpHU62rkEFkhGowdsNrvdbQXBV3ZNM9TENGr%2FTSzoRn%2FZLXHoEyAo4ckJSx%2Bau%2BBBspEdYacX8yA6iCb0UGXmlKkTd504Fz8rb%2FgchAXYat0CdkjjEZynUFmSCDVIJg9AhmYypVOVEwBXRFK5UWSV22N7Ev4uHU92T9OQe%2BLX7PPaKziWzWZnfL9pJMZW1bO5OPS3LSUP1S3lg9poocvnk0ySppm8njQw8cTzu4wWMA6PAZgtFm40C%2FWaRcikzJbSWfPzuXKqQ0sxKLdfgl3BF0A82brsgaXLW7gB12EPzH7oTqxuZWvZKtp73M0Tm%2BPz4vvlDUeOLdxZwVwPk1KRVS2cQX0ce4s4n%2BRlpKcHICC7LeCGy4rdAbAELNlGX3ZNzCdRYyq%2BuhvwVHHWrRpn%2BIvGGoVFl%2FMhDadWMcJP9LZen9cr%2Bdin7JuOx%2FZeN2FqnzFL7767DtWvZu2f2TrnyermlsJrn977BC7f%2Flkz5g4srx3e8%2Borqypveeqmzf8qL%2F13n8KGgcUDKqrHbRP6FwNIYiqrimdLCgBFNBhVKlHOuxSdv3y2lARgcoLtYrOlOn53IGEMEF7k%2BdXC13JCQdThQHSbDQaX08hRhsdSYuuXVBAOtyLx4BHI6%2B6CYLnlEXbyLfYFex%2FD9zz7BAf0ztqVZ%2B7EwHn6YufCPz33%2FDraBqjXfyHBI2K%2BRonRKAOiVZYkC3BDJ%2Bq9VNpUJOaj%2BsXtVx6h57CC2dmLTMMKdPlKFXO0a4DY%2BdTwvZeN%2FqJLhrqRy8gSsx%2BT0e52yQh%2Bv2ynlszMrKwci9mcnemSzdRvt6NJiOSi%2BEtCbgo1UyM3WkiKOMKJUtMlGvCIi78nPihD2fPbzWFJ6WPdxqngfix9q9Sr9HQdwoJDth5mUy%2Fnm1hKoRixV%2FmpUJxwVT85trLi1EAa6twb%2BaS%2B9uuhNBsStmnSbVMVzTXLnPpUo6oYTYpJ0C2VLGYDkWXJqFCUkhDL9evG%2BooUZ3VpjZj8Izex59h6fnXg56wfNmF%2FDGMtC5Pi%2BGHyHdka%2F47Y4j27dJCYyF2B7wZVlZEQEERvNFFF4QqiSgVDdslOjEH5Z65AarLLowIDZAGWchEZbA%2FLwDo6mozsXBTfQUqoXleVJiZ0RugfzTJISFUVEExmlYuSRP1I0IAGUcZdOgxNpl1qFqqPbALSzPPvkbfjTVJ6vIrs30m%2FRXi%2F0ykkLWUbyWw9T7KjVgXRIIFRJlTBfN2EuvH0BNZX4iUpmc0y8bOPPmIblXMHz60Xa1gA6MDkVFt%2FZIKYnGpfnBa6sUmAHY9%2FmJhqI4S4fJ%2BQL55xoKIY%2BVYNoOZTiaaCvQtCfCFHMMy1CH34IX7GMmfKjQd%2FUoR8AzFIA%2BR3QIHeUTdBWVYkSTznFd6SVJko0DW%2BxLKLeyTRZYcwiGjADQ%2FjqVO8uP6KGOiGzmqyKN4maq1OtpHWXhja9SRIRonoRhEaJZ5K0NrOFyl%2F%2FvMAAGKNdIQ%2BqATAwK1gBjVKRVTIdwCUpB%2FrioP0XWLww7EvHPD6PGRL5ZkqbKpcLx3ptW2gZ%2Fz7GYIdmjju9pfm6E8Zq6OFTovBQvLy%2FP78LIMhaEkbFrNYZLfbPjjm5jWdnDM4JnvBk0Az%2Fy%2BZVYSeXlcUJWdMvMcN9%2B1u8h0omny9N6YT%2BhuGr1r0xzd%2BOr%2F5xbv%2FOn7T8Y9PswO%2FX3znY5MWPHHDsNfXvfono1K6rn7f%2BK3vx32E27h55MJbxwOBFVznDsUNTsjh7BvIojRg1Mw2n89szrWA2WPUFFDSh8QUL7iGxEC7mCz83SHi7H5mUeZ0aISzRVANCgTlw1AfH9d2D8WobftHX%2B7YNsMT%2BhpLLZbJM2ZOJJNvaZk%2BQ5rNdrPv2XH2t6XzFTdbPuiJ9jP3rwh0PPOXNWvWAMLoCyfoMWk2eDi6esRYymclxCubh8RkDexcM%2B%2BlZZJuOTk32SdwmnJoYkjgUBQyIf4DZqJx81Mjh9525cmTzcuHVf%2FBTQZgFvauOZFVwBH49ZIydr4kH4iQK81M2CcaDRi9Gi%2BobTZhqFy7xwIOIyi6fTTdPt5ft4%2BoT4Q%2BecShOXlPGioU%2FBLkji3iOnVPiAnZ9vHnOw9ON%2Fmw7Jv%2B1omT5kyVp7dNmDnLjWVoRx7zq9vG4YSfTjyy5vt7ViWNk9BynD61y%2BDMEKROSUpzOLKcJlOm3%2BOkzuoYFVUUVMesmuoZHFNTel5aloiry3bI3RbgrbNeR4XKwOMJ6AVAxMMtOP2GaQZcT2aVs%2B%2FY3zDt7LdoiJfID985vmNc3Qb61PyZM%2Bd3NmAPdGAahth3Jx%2B789Eel5%2B4rCjB7nSOkgMeuCKa7SZElSn1%2BqwAPhndyHVz283akJgZqJ4bgp8v7QVDiRwWFgxH9KfOeieocBWpiZ1l%2B9eu3bj%2Fufm1o2uv6ocGOq9zCZ23rKHh3ZdLPsoafsVgoKAwtzSV26sYyiEKd0SrzFlZAwZIfRwOUqzmSkGUpIHpPXr4fJFg8Kp0K1jRqlj7qv2GxYy5Eke5wr7FpDpWXFxYWDksVqi5e1fH3BkXz%2Bn4pxIOWz79gRHv0LneqJs2FQ76ewKfPao%2BpSsqEvmsj%2BykQFfCF6ZeRcGFyUQK8v26El%2F4WGzqS33OfxjpXbL2ndc3sTfYvm9%2BvP3WksHVg5tvOnmsZKGTFc2buvrNabOfa5w5%2Fdrrmura10otT%2FceNqZjJ5Xzew187smt%2F1i1bPw9We5Roeh1xYVrZ732vkM6L1UOHVlb2WcEHT5q0qRRuwBhBYC0lmeDB8LRdATw2Y0Wg8Fo9Nolp1MaEnNqJkCjR6D%2FJfU5336yUOPaKqJJEuCQeFQirWX7O%2B6YxfZjqapqE%2F61bQ958LsXt8S%2F40CwpeDekav%2Fvh0ILAPAD7lsA1jEZFcyGsFksprtJg9Rr4kR6DJ%2FZWoO7uobKtNnnyJUlrW3X3ttO14phMgLHn98yIjzPqkFgFxoY259XSt4oSTqd%2FL0JgaDT%2FNcE9PAaBctOk%2FsjOTEKYEwCRGJxwB6tajQpMDBcxoHXzN8CJbum6GLZe60066mRmnd%2BeJXN6mThXRIWPMH%2FUn%2BNdGgxLmTUKrIsmYzWa0Gg8lkN4P41WCzUcXkofbu2oTf3cjSZdpuokXRuGOyi1dx22KswGZWhYd5AffOIrF9jYxdh40sI74Et93MVivueDXr0gYPcG0ouF4DRIkAevQioLvExgPivyvuhO7qQJ5BQRgeLXS7XPrsKDMzI6PAajSaTPkuq9WRKzu46XwOzWzPRJNH7%2BG7krl7%2BOC8ePqbjJDCRIiEfKFykdziVfBd8q%2Bke9n%2B%2BuvnTGL7vy529F437Xwso%2FdL097ZwvbVXz9jOnlw3rz12%2BLfSS1Lh1%2B%2FurZpy%2BF4kfhtxYuQjGCut1tMFxHAq6vrscoOoatQFU0Xx29SyV%2FXLRG8TS0ierkyof%2BZtWWXEPbn7boC9dce3JHE5yf0pzhpostXLJYMcLnSvcYhMa9mp0Nidu8vu%2FxUrvPeVQMOCCQs6MzrxGVT5986ecr8W6dQmX3ELvzxh7swGyl%2FI6Xt6%2F70Qnv7mhfYKbbnQTS8jE7s8wA7B4LrOep1cC1ckMMn1Hl%2BRVFNlKpZmqrlcuQEq9U9hBOEwa5mQEaKzBKmSBWoSQVlTvPepDFCnPndRKFJtuemosq2GZrG9p%2FtaZv8wfaPbt58TGf7vePdSx%2Fwsv5K9SPtbB87%2FT%2Fs7H10mU722JDgM67pTN1euaIq8dIsyh%2BTpOUZ%2Bfg6PcNnz%2FZanE5V4I0FhsQsv8m6iSfIBUmS5S2dL8HBXl8ook%2BLIkFBaLdMkafPPzxZ2v7R5zsmPXeFIQMJ22e1lq48uri9oOMZ9uLa9lNYiho3Z9%2B6xqU%2FbcBDAybXN3ZFFJ3LddVEh0mcejw5BCxZZVnUS7wGFxqlMrTMRy%2BJIqpdWewrCD%2B6iu3%2Fsre97yvSbCP7xLR8SXyH1LKxZTYkqp%2F1XIZ4dpmjpLktAEU5bnchWNw5lhxTli9rcMynUdPgGPX%2BvJ2%2F2BgiqPTHK2HB5clePsGgXCkPt082oetPnbx1%2FbDrDtW395oycuG8yJd%2F3%2FXu6MZHa5Zcv2zRrf2wZn1HILfzsvKx%2Bb0rCstHz73%2B8VXN%2F8y%2F%2FJriK%2FqHR%2F%2B30LeE6xuRa8AjToRYDHa7y2UyEIfB4fWZnHbn4JjVYrfL3HVyQt3QpktOVnRhgnBcxKOXvoLpIyFPwCO6cjK3bsas9tdeeHRt8xasYDuu%2BTD4aeiNN0jGwgknTn4e%2F%2FyqK4UOT%2FGc4zM%2BcENZ1E8cDrfby3t%2Fj9NoJ7JNtumyPcmJ1sVDgItr7tQYgH%2BgrxdrpR2zt72PpSLjsXRp7XUHt5Mj8dki4Ynt%2FEpI9JkPcrlm6BV1m0GWiYgIK0G0GNEuC5llKWndDU1X%2Fx0SbTfiOtaElf%2FINyryZYexkjVJLfFF86aMXUzaumS4AZRtXEaWOMsoSyaOIVng81ETVTMyMjNzVEXJ9plMVLbbMxQ7yDqidR3RdPz2LIDSIO1WQ8wBsin%2FpGskRZpuUfew19lm7LMwJ1eRcrT7sG6R5NCsqBgvN92NPdk7uARPdt4vtTDH4m9q1lxH%2FPGvvE03jMkcer4XnuKKI5gApOW6bWqi%2BYoMaKSUSAQlGWWzQVWtfIZmMSoUAA1mj4T2S2cBqaROkYZeq3KlhdkClOu%2FmD2BI48cxZHsMWxja46fYO2kPwmyZ7A1fiy%2BDRewhcJLzK17ycs1KTC73ZrXK0koahm%2FJgob%2FpNT8no0p9XJMTHDAFyVskQJkKKvhBlTUzxHyokifvTqgNsSaw9mmBRz7n4cwoqu%2BvcfR9RErqqfl%2Bfkfr2%2FYcZNo8ic866XXnR8Z72xNZI450HXce2MIn%2BoKqkIYDYgmvQhAm8c7YR%2FMwyOoefSIULSSMJGySlCWEwR6LrOB4nC0uhAZiCmDrLp6%2B3xekDI4T38Id7D54ipCHUbcnIcfn%2BuNTMzIFGXy8qjKd9qSbTzYosp2hbbF7bnuBrm%2BREWRw08Coc18VTQ4xFQ6%2BEJhDmL2m6%2Fc%2FOZG4cpn31T3XpmM9quH32qucGAVz7Z9jEdXMUObcyzBF8xskNVg%2BknbU8BIO5gJWSlYgMK7tcIpZJMAaCyhONDYlbqCOKOo0cV29lA1ylOauB7yBN7yOHlOmgGQ75bkoI52TabW3Z7qCzl%2F3%2F2IIuHzuFynuSi2BZnlftyiBSnzxyCyzwcrImh4e0Xbhz2%2B9mfKtWtL7xTP39x26LeM2aFPyFVQ7CnuWmyw5K3EXsOrqIfh2dPY5tNjY2nGm7QTxGQIqmCtoEHIlG%2FAg4zmKnd7qNeu82mSJSaHQ5QoCRU1lYi9ElBdqqp5pwa1sv%2FRAMmELwQB0baym968pqFwxaOC99ePv7pgf89chFZcXX5l1NzcyPRii%2Bnphf8lzhBwpbiQanl0rP6Dg26zurbad4v56mukCugE0Wi7Vh7JsTasSV5lIO0dJbKBcljHAhLOdJqfN6cwad7QYchPV3OyCA%2Bn4mYMrPSXCNiBtuIGMiGNH4pGWmKygXqpwH4S8%2BePzvOII575nOCTh4R15lS69q26gmSEBt94OCr7YtF6z7vlm8b7mpdcN%2BrL%2FfHcyhjZk77c8arjmflv%2FBn9kZObzbAuFFEB4A0ST%2Bd2BztZXeaidFqTfd6iV%2FzO51ado7Fn%2BavjxnT0sDFqcleG3P6QR7xs%2BNNXUfUIJTSVqjbjT%2BpBpRfbpXXFSKawsFwiBuQbNyyZcyzs2sbcS679w9k3%2Fmvbhr%2B6qufy7sbvojGrt10dOm6WtZ5ttes1keObtl5BAjMBCYFpHXcnkW8R87TLC6j7EsnBrDZ8jIhM%2FOyYp9LSycWo2xQPZ4ctYBHz%2FYyHc11H2qb9S%2BiA4oURXyC3SM%2B0WGqPrVIoJJaFCmMXFRdbixfuGzBqEk3j1qwfGE43Pbogt%2BNn93Y9siC8v1T6%2BqnzxxRO50cnPC7BcsWhCMLly6MTZs8uu2RtlBo%2FiNtYyYOnz6ttm7aDBHpCoDEp%2BPghZnR%2F7I53U6Plce2UaYyMYkJqxeRED%2FHBp%2FidDkbYkCRuuwmm93WEFPtdgt6FMsl5xX9mtiW3kNfypcpEhAfkgPKkCfoEXdAGF7cGCBD0YAVbOGWH374gX38448%2FvsOW4BViZBv3vHrfq8eO8RdyHMhFiKNCMGoniiKGmUaJSlTVsUcEbCpFdAhyJGBIAFHnAbag8wAAgUm89lnw%2F0o5D7g2jvTvPzOzu9KCJNSFaAKEBMYHAokSuQpiY04OODjYsWxCcjbkNaluuPdyiXuaS0jHpPfeE0N68fVO%2FObSe%2B8uy39mVlqEzr76oeyi%2BbG7U3bK83yfkUZBGZwCMyKlaRaXRRTLC6E4JyfkAld4DKmpsbkrK0ttpSafxzc15nHqTVNjepQycUvmivi5NiuyMYtA0qyNo3NOVr9OFfZJmt75WUW7VMhOWtE4fsubj9zRP33SzuaW6LxFB3rWTJj4xSuvXdHyYsOAb%2Fbpj257c%2BOS5s4tvmrim7appHXPputbn8kPlVdURssit194%2FxklXdGr7p3261Hh7uKKUGH0uu2nzi8Pxya1V5qmAUYu4UfygiRwVi0%2FYrQaWIvIdGcQ4pBB7dzU9snCdpLZJF%2FSOXJNjdRPPa0uMhVd2TKurqk5Mq5FXFPXEB0%2F7ucNExvqGieOb6wDIIw7lSbR99oBPqhmvm9ikm0mm7%2Fc7yzPc%2BbV1IrpYEmnX1mlhbZglpActKMVbEo36zBrHWyifBGnSASrw44ZvIhr6bwgFCxiuH4R45HIul%2Bc91p4c3j55tf%2FfvilPddGFx5b8zJqf5X9DCi9v%2Fm10vvcrj6U09uHsg%2F0Ke%2F29invHSBfX7VJ%2BTAv99nwkcNvfNd82xjlI%2F4%2FSu%2BrLyi3%2FObXaPaLTJb0b6xlBfCX%2BDHKMLqgAOoieZk65HLlmXXU56PLK%2FRmGI2e9HQbys4GEGweShSEA0F1mAtak3BQbR1SPGxVVo3K6irbp3YM1ToJV3pGr452r7n58XnrWi6tr79h3tY9yqTy%2FKbYvMvxsYvGRLrPu%2FBCWegef0l%2BcNcmpeGP%2FqIz6oqkNPas06Fd6BEEkMAIbZHRaUaDTKd2RMKCgERqGDdkGNkrBpBGCE4XBIMoIpOMsR4lWko4kLBqJI%2BK5j8Faab66Q897w8yR4ALIR3yqYfpaPGg8hFyDSo70RG06A12%2FoayC49HL1E%2Fs9K3DL2QNXzKGb8fhTCZCCJkRZgzSkcQkogAAdYJoQTf6LXQWZQQHjx2hLz1I7pgEIaGErEHWAIzAAhaezTEW%2BS5kUqBYFHUgcViJEbamxB9uT%2FROLFE8QLBIegdsp5%2BnaSN8spKbara53ErgY4FlFnoIwadmhP5X7VaYcvuz5QHAu8h%2FcO3K%2Bs89eFTJuceP%2Bdft9utd0xUFqDpyj3kqh3K1%2BH6uhrlzX%2FZctHQEckuSNLhJG8MjPTGCNLRbwWDZH%2BFr%2F6Jm7D5hAmyIDMiQ0ZGTrbVkMkqRQ3FUq17vL06HSowmDyctbXd2N5201ln3XjW5a88G6uvnz2nLjJHWMg%2B7W0766bZL10emd02YWJ7G%2BNFAYSwiCGdcx%2BZGTqdRB35BoSomd9sMRrSZYQkAYOKeoYC8S5MM5WnxriwyfZwnAs9I2%2Fh3kG0RVlFY12UNylYiiCAo%2FgZTriVRKwOA5LAgiyuTNnkwQ4Hyucer4lJXb96j39EPHUF%2BJnjK%2F5%2BbriipGXeqiuf3np9%2B4YudA6O3jbYEQv6S2bt37Cle8be7rMBwVgcxo%2BIr4APJkRy7enY7QbIl%2FLTzVK65C8mdrvDIed4PSa5IIE5pbQ8dlABTRX6S6xu1DgHrezj3QjuuaN9%2Fn1P7N541ards5oXtJ3REgwFWsOdE%2Fb9v3W9wlu7a432i6at2N7wzOzzq6tvrAr76ePuDExYn%2BqLI0JEDyCnCdwXdyjui3uFjR%2FVNMjMIUk6ao6YiGZWHZ0i%2FDX75U5H1aEgAOK2LmrkhkxmMUmXJFnOsjrBQR%2FdrXNlOGl7yiCq4Y2Z%2BzTTkbYwT8qwtv73xo0CxS6XhZtDZ7WvpVaAD0ZnlC6fNWF%2Bvigy%2Byj67YoVdz%2FPrAF7Z8wo%2F9mM65SDUhQQLFSOCbslO2RAIOJINwsiAoTMFr0emUykKWYSWc8XiHtk4gMlbe5qgAb7UsMIa0IFwu6bbumd0PqX1%2F72IW5Tjkmn%2F3QfCVmPHEWCwiKd8Cj0e7KGEUURmUU6Ebk1RiCQCHSypSLhfEr%2F%2B2Eqe2hQsaNeALBCVcRlNjI7Fh1Y7Gaz0W60ySYW9pXNXt9QQI0EXB1%2F3PjAIiZPQYprQ3RWgnr3Xd88KXuOu%2FGW5v7s6Kwj6xc5btOZJpzh7hmf2cktXDiKGxPRSYI8MjopD%2BWfMDoJeePRSb4QbvyciNkVzReismdxFD2z4Oyi0vHr6MwOwnTUfEt8ic9KPBFjIvYqgzhkDw%2FxTGK3kxc9YlKPgt969IarH3%2FwwP4nFG9dY%2BPEiY2NdULbnf0v3Hr7wAu3dHR2dnTMm5cy6s2OlKZTy49OL2AW1Ib01FNiGh70BD7YIdHEB79%2FOej1B9UBL%2B6NL0aoFonqQehRdg4ip%2FLxIFqsSMPn2KuMXYbaUNsyJZw1fMrGrnIA6Qpa2n5Y%2BTuAYvg1fgUA6eAP5Nrjj4L8IMFW%2BuJUVye0D51Au5h8T7W6B7CZSZlyNlXeJ75ClUs8XEnM8as%2BEb9qmXpVwDBeWUH%2BLLTzNU5DpKiQug4YJk0jh0pMoyDbnI1lQp0JPk9rzJdhoRy8xZvKwaN4g9Cm5HHsnddbrUub3bCVWHLF4ldiF1wYPjM27aFzzp37w3lvHP3F7rOrUcnw6jY6d1dT86yJ4eiY0sOnTO6%2F%2FYLru%2Bj0cyyamXhHhoZU2lu3GPuhiOexHiQ0HfQPYqfoh9HVJ1B0w2%2F%2FheIgzFQV2SMV52iKgYTCOlIxU1N0cUXaQwR7uWRYkxbXSNDfPYvXhpfEa4MpdD7OPtrg4sg4yUbMNmIRLCjNZEJsvgbgEETRbiYUvqb4syENGQkj%2FJFkkzkxTAQrMmlscsKiQLvUAAeUNb8G7yQ062PCs0QKkEYsI9rR6nzH9imOvcoLeLew9%2FghbKIUT%2BhoLlq5jiPvcYqZDnXNrC6WKXZGjNP8%2BVlGYAXOBfY556p5%2BZaodTT0KC89ZE%2BUXqqiG9pSFPdShT1JcXDoO1XhHnmNmZqia%2BgnXgMYFag1wGbucZ7cAJnQGCmivUCW3ep0GlBamtthAIqVWwGovcRJi9eKLYy8TgmP0%2BBgddahWmkscQqUlpiPo4MhBwPPA1tV5FzFz7cKwm9%2Bd%2BCzzzahATIdd1Du%2FG5GoOPWnR9%2BofQoyl1qHsRXeDuriLez36eUA%2BdUeTlUxtt7N1fgvJMpulHDv1AchOdUhXek4hxNMZBQZI1UzNQUXVzB2vvoeGkj2IAMglnogXTIjaRLBGTZYORGZXcgqMUn8260FqnLBlSM7lL%2BuB%2BVocqr6Rhetkf5tfL7vfj3qKxH%2BSMavZf%2B%2BVuaSiUAhD7DLeIHkgA2yIZCCEdyXJ4cuz0tB9LAW%2BTMK3Ab3QxXJQWpdOWImbyK8arGGFaJqpEG2V2IO%2FyqihEFV1Wm94Xts3tnv8iA1RevaL1x1sDRP56CjrR2UWL1%2FZBiOG0%2BWqzyvXWXXHDpANrEwNWGNfM3DSi%2FfHYJ%2Frbsp%2B8e6j5uKR4aUmlIXgO18Vocrdaz1uOkKrqR6V8oDkKPqsgfqZipKbq4gr0RJcl9kqDwq4yNv3kb1KtYuCSJSmbrqZpIDiOjjbIoSpJTMDbFZEdTTJAFWdIRyZowKGrdjOZBjePIDroW0tZGwh2UUz1yNcPaH1CQ4fikjst3rbt0NcHv%2FagMUij5c2Vc18rz5%2FNZJM3JfMkD1dAaGU3tegXFxQDlWSZTbXkgUGPKKtBBcbEui2SWhkqnxEIQcFgyozFLwnGq7ZUx0g03TH%2FaTYLqcnOkuuX8iaFL8zhXsVAn4a3SSDRSWl1%2FRVfoo3fmXTau%2BubIbfnTo2vnNjQ0TVjXsWQjbb4%2BhL9FfuGvkV%2BcNqai1JldVTJn7srmu%2B7JLfy6KLhqVGhcaeOylsh5lbWnl49r6TrnKPVMv%2FLO%2FazH5ASbVEBr5VQ%2BUtQfAPb2jbbEazY1vfvCE6Xna%2BkHfxhi6RUj001a%2BkAasPTikemClt4lAX%2B3T%2BGCYcUDmqJ%2FlKrwqwogTCEpQjeUQBBOgS2RydU1JDM%2FP2g3GoNBuabG7%2FGMKZPlsC%2FfW50fjVVXsyDp7OxQNJZtNo6aSoF3p%2BS0NFDHPHgbYiBJgQZGv%2FERLZmZ0t5q6wkJKnqMhzBz8MufZG0ZXsZRzHYYrWJk1TDShwoZfiVWbn2rce4L19%2F03NdfPRtr2nHzvKc%2Femdx%2Fd3LDyM4XkaJq%2Bcfm%2FbY8bqFq1fv6FyOvX%2B1oHvwefbOru7Y0zcz5q91cn3Tq52bInXKZx9RCGvWp8UlOEsQzpxD6T%2F05acLVrNap952xtZhP0xWx0%2B0iY%2BfnCrjtT1FbQ2389oqStRWanr34n%2BeflDP00eNTBe09C6rWpeVidoeugYAvcGv8LTaXynTgF0DGRLXuBwA%2Fy5J0T00eaRi6JdU8UmS4qDyuqqwJBTvUMXlkqApuriC9Vdu9UkSBIfk5fPVpZGx4MYuV46oJ%2BkEY0tOTnr6qEKLpcQNmZh%2BSJ2ImdjppB56CnnSKS02%2BRpiJifBU2MEnYC8izsQ2clwI9I%2B1YYLf3Gtkw8SVgdtm4XAwyNdtX46hDAvXCL2GCmnN3ZetuitjjuuvUr5%2F0PfKX9DwuFDDfpT17zfga0rz19x8fIFq84TXdXF99Wdtr1n%2Fm5lz4fKh8pLyPrJR8gyV%2Bhdtuva4%2FMv2Lj1ih27%2Blg74MwMf2tPV9%2FaEPAZUHI97ucl3KK2k5t4PReeOJ319ZfAyRW8pRiS%2BgUt3aSlD6jpeSPTBS29y6C2pIDWK8yCw0JYeIl7wbKhNGJ1pqWZBQEIyYUcNwVKAXHz0vPBYdBQiw8WTxJRTWOGj2%2BK1tf%2FPFpXNzVaf2ojO%2BKOwcEvTpva%2FPOG6c1EmNrUMqWhpRkIfcaHKAN0OZ81eEfOGnzxWQOjb0jBFAZx%2FC%2BzhmCNsJ9hQWsvOLVn0n5GBm1eUrt%2FzK5jR21o%2FOiJKy9AhwzKa%2F6alefjSoYJlXV2dVyL7IwUqpp%2BQes1ytH2RjTouvnWlnFKMOP2oSGVpeD1c2ZST4ByefGmpvMavgVOruA1XMnTC0emC1p6V0B9A0u1np977PkV5qi9zXh%2BBQ8XJOgmziYWsLhqD%2B1vHQZzli2Dxi8VWsCcbXDIRM6dEpOdxEnL%2BCQocxLLTDtnDWdWTT4Wyh0nAU7ot8Herhf%2F%2FuZLf5xv0ulUfvGjOONEDrXMYEgzK%2BCtE9qVsXpQVixvbB7mnLQ8CVqeut5Qc%2F0zNdcJKk9oH6byMk5M5VGJGk2mO108BE7wQmekxuJwGFF%2Bvs6WAeDL0umKLHa6drMgI7HQX0YznaWSNBddcwhCLotpRQ5tBcd%2BThplmiAy%2BBMMx2M6XcOLuERnVGvx%2B3WnH9vn31Wm9Cv3oTPQhPGbvaRDW9Q9dstdd%2FXVrfR7t8jpaBvqQuejTSZZXeCR145%2B8%2B1PDivZbnPyN%2BhT3SphMXhgNARhQWRMoMKEHQ6%2FX19RkWu3V%2BXr9aEchzvgiMYCATCbfxaNmc3YJNDOmfLEZnDT4VwQvFNiQupwHj45Cp00iOdT56kG4bniI7dDo6KTeT2fSk%2BLtyhf7dl5pPfHLSgb4QUvT7nsi2%2BR%2BbhTt2fL%2BU90tDx99FwN5Pu4fbWMBnC3%2FZprdiD9%2FciByqY1XcvYaf26naXlbOCeHGf7BhavuJhFHD0h%2FFXwSAVgZP0Zi5ozAMh6jE0ZWF4vsh39sg5pyx2NKqQzEZ2XGU%2BdFNAgrdc1Ne977elTUafn6kbhr2ed0XJ29tMLqh5sYBENqFX4M4lKD8Q9ehmS1eqmkUWyR8ay7CDxvRTYHVKNZ7qk8YhEdy1YcOklCy%2B67Pqa0tKaiorSGvGlCzavv%2BiCDZu7ykKhsrKqKkDwa%2BHPgkEygQuqIm4KNEUEQjLdBhvobPTrYvM6MzavFyCQ9fpZmoNENQebXw6qkISXvbF5mNVHiE23yjF6xRM27knfvXTUtKZoET%2B%2FfAk7F%2Buray7vKyjOr%2BKHAr4bGHqI3IN7%2BG5S%2BAS7SU0nbeih999Xlbp%2FqtQllG7Sj%2Fp4jIw7kiaIOqTTySBou5KZB5gLq7jGWhvCumKTs7N6sN5L%2Bp1zkG2h8t3HkHQFCVwRmQhIknSCRC8wvD8WUrffQHtNwbWDkz3iI84XlPdRySFI3luLeVIwEfnuWhIEtNuffHstwOzeZBl%2F%2BgzwRczUIGsiggSSZNFlkHRtI0Z%2BoT8E%2BbOoWSnwxY%2FoUzVPdILhSZyRP8ezp2Vz%2BE4SGJn%2FndpNDXwrMFMaMYjsRi%2BqN9Luoz60qB5QH885cqO31JNM8Ua1DBJFgVlJkOt5SRihMGIaeQcIpN7Ap91gROGgt0eWkkvbi2wunXrfKIyCdLA9wszuRplAgHssUq3uc6%2FavnXvvku37cGf9hzou3r%2FLbcAELbTizQXhfm75mXsYF6m6kEvys4gbKuXAofMQuS5LUhtbJnmP9AJy8gdX3yp56m7v%2BAps89kZzPacGPqPmctKUf%2BVkA7vpHbtCsijrgDV9RLQAg9pa0JI9VZmsxW0W%2FVN5vqlE12xKZeO24nRzp2bfoHPRPEf7z2SBs4vvHEBm8ApCxj83oe25YVSSeAEcaCFtqW8B8j5EX48mN%2F%2FIKMjge2AeK7BW0S%2B6EYdkQaJaL3%2BXI8RW5ntmywWIrSafaLika5cnP12dklBpdLzpRy83Knx0heRt66PJxOMvMy82yFPiiEabFCndlkMzXHbNp2YiNNoxZenyxzKUghO%2FCtQOhvro%2FH5DgKdA420DrVfS4oWELdb%2F7qWvq7BuL7XXhXXu9CVyrtGKN5yj0hZNq9ecn93ynPj9q6VMBLtvjQpG%2Be6ps7ebnwys5f3ucNFDzwTXgIxqK0Tx5wFVff9zVyT%2F%2FQ4%2BXsWgfzjp%2B0n6MTYDbdHRriMbs%2FSh7wQyNfQ04lboD45x8nfd7MPgcMBhzF34tPQRpYGbthFXUmWnBEBixim90k62TJikTRaiW6PJLPDTwBLSYu4RpNwn%2B8DhpfWI1CfA%2BzWrZnHP5%2BzefKBrTh0zXKHkmuzliH39q3rwfXHT%2FUN3Nu1gWuZ9Wn05u0pyuGRuJWn14KAMTT4QTpzcPp0q6k3PF0dS8BvtMDAcsjIIiIQGKXQLYPAt8FgTU2uvZ8EQDruB3sL%2FEV7krVDmZIWNNupYoPkxTdQ3NGKoYYgS4mKQ4q76sKS0JxHADfqZupKbq4gq9wuaT6%2FwCVeR0IAAAAAQAAAAEZmiehT9dfDzz1AAkIAAAAAADJQhegAAAAAMnoSqH7DP2oCo0IjQABAAkAAgAAAAAAAHgBY2BkYODo%2FbuCgYGr9zfPv0quXqAIKrgJAJZXBsIAeAFtkQOsGEEQhv%2Fbnd272rZtG0Ft27ZtW1G9dYMiamrbZlgrqN17M89K8uVfTna%2FoRs4AwCUGVBCU0zQl7DAlEIZWoPOfhXUs0BbVQAL1CG0ZepQd9STPdUW9dQ61FGN%2BU5LpOW1pswUpmU0hZj%2BTGOmWnQ2lPNyV2rEoO%2FA%2BmUw0CwATG8cNjkwyXzEYZrG9Of5NUyy%2BXBY7Q4Hm9a8tgCH%2FWU4bOcwPfmsjc7GvDcYPWk7StjU2G8qAf5xwHQE6D%2BzHRXUbqzi96bmrEQNEeim4V965jWnB%2Bho0sNRHnTn7E5H0V3nQAlaAGsawqkxWKfGhDPoO2Ts%2FGdwsk5fIecd011vh9O%2FOaegHO9toBWAfYLM5JBSxvoNquliyEeDvUucbeXvMd55vIqRtTGMJTnzAkP5bdnsXvTX6VGOPkbfYe%2ByRgh%2F6xHoLms6QDmmlvyFPThTB2PEtbczfMbr3XUu1JD7fmqUjaYre68jzpPD3wJIH6QH0RyQ5L6Ui%2FGeGFqDOZLiPj7iXnpkDsKJ5%2BTwO3LmEe8JYecb2fcazoXMC%2FEd4z0J7EFS3MdH3EuPJJX07gom%2Bff4%2FDMcpS1ee85bBLQNGO84cgiqPerpVcghUBEeK%2FS1jzBBfUZbwUv5X%2F7bkOlslqCEwJ5TBw4lBFsBJdRuHA4vYk%2Fown8RLYvLrQAAeAEc0jWMJFcQxvFnto%2F5LjEvHrdbmh2Kji9aPL4839TcKPNAa6mlZUyOmZk6lzbPJ3bo56%2F%2FCz%2BVaqqrat5rY8x7xnzxl3nvo%2B27jFnz8c%2FmI9Nmh2XBdMsilrBitsnD9rI8aiN5DI%2FjSftC9mIf9pMfIB4kHiI%2BhWfQY5aPAYYYYYwpcyfpMMX0aZzBWZzDeVygchGXcBlX8ApexWt4HW%2FgLbzNbnfwLt7DJ%2Fp0TX4%2BUucji1hCnY%2FU%2BcijVB7D46jzkb3Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhhjytxJOkwxfRpncBbncB4XqFzEJVzGFbyCV%2FEaXscbeAtvs9sdvIv3cjmftWavuWs2mg6byt3ooIsFOyx77Kos2kiWsIK%2FUVPDOjawiQmO4CgdxnAcJzClz2PVbNKsy2ZzvoncjQ66qE2kNpHaRJawgr9RU8M6NrCJCY6gNpFjOI4TmNIn36TNfGSH5RrssKtyN%2B59b410iF0sUFO0l2UJtY%2F8jU9rWMcGNjHBEUypf0z8mm7vZLvZaC%2FLzdhmV2XBvpBF25IlLJOvEFfRI%2BNjgCFGGGNK5Rs6Z7Ij%2F45yNzro4m9Ywzo2sIkJjuBj2ZnvLDdjGxntLLWzLGGZfIW4ih4ZHwMMMcIYUyq1s8xkl97bH0y3JkZyM36j%2F%2B58rvTQxwBDjDDGNzyVyX35Ccjd6KCLv2EN69jAJiY4go%2Flfr05F%2BUa7CCzGx10sYA9tiWLxCWs2BfyN%2BIa1rGBTUxwBEfpMIbjOIEpfdjHvGaTd9LJb0duRp2S1O1I3Y4sYZl8hbiKHhkfAwwxwhhTKt%2FQOZPfmY3%2F%2FSs3Y5tNpTpL9ZQeGR8DDDHCGN%2FwbCbdfHO5GbW51OZSm8sSlslXiKvokfExwBAjjDGlUpvLTBY0K5KbiDcT672SbXZY6k7lbnTQxQI1h%2B1FeZTKY3gcT2KvTWUf9pMZIB4kHiI%2BxcQzxGfpfA7P4wW8yG4eT%2FkYYIgRxvgb9TWsYwObmOAITlI%2Fxf7TOIOzOIfzuEDlIi7hMq7gFbyK1%2FA63sBbeJtvdwfv4j28zyaP8QmVL%2FimL%2FENJ5PJHt3RqtyMbbYlPfQxwBAjjPEN9ZksqkMqN6PuV7bZy7LDtuRudNDFwzx1FI%2FhcTzJp73Yh%2F3kB4gHiYeIT%2BEZ9JjlY4AhRhjjb1TWsI4NbGKCIzjJlCmcxhmcxTmcxwVcxCVcxhW8glfxGl7HG3gLbzPxDt7Fe%2FgY%2F%2Begvq0YCAEoCNa1n%2BKVyTUl3Q0uIhoe%2B3DnRfV7nXGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOMc5zjHOc5xjnOc4xznOMc5znGOc5zjHOc4xznOcY5znOM8XZouTZemS1OAKcAUYAowBZgCTAHm3x31O7p3vNf5c1iXeBkEAQDFcbsJX0IqFBwK7tyEgkPC3R0K7hrXzsIhePPK%2F7c77jPM1yxSPua0WmuDzNcuNmuLtmq7sbyfsUu7De%2Fxu9fvvvDNfN3ioN9j5pq0ximd1hmd1TmlX7iky7qiq7qmG3pgXYd6pMd6oqd6pud6oZd6pdd6p%2Ff6oI%2F6pC%2FKSxvf9F0%2F1LFl1naRcwwzrAu7AHNarbW6oEu6rCu6qmu6ob9Y7xu%2BkbfHH1ZopCk25RVrhXKn4LCO6KiOGfvpd%2BR3is15xXmVWKGRptgaysQKpUwc1hEdVcpEysTI7xTbKHMcKzTSFDtCmVihkab4z0FdI0QQBAEUbRz6XLh3Lc7VcI%2FWN54IuxXFS97oH58%2BMBoclE1usbHHW77wlW985wcHHHLEMSecsUuPXMNRqfzib3pcllj5xd%2B0lSVW5nNIL3nF6389h%2BY5NG3Thja0oQ1taEMb2tCGNrQn%2BQwjrcwxM93gJre4Y89mvsdb3vGeD3zkE5%2F5wle%2B8Z0fHHDIEceccMaOX67wNz3747gObCQAQhCKdjlRzBVD5be7rwAmfOMQsUvPLj279OzSYBks49Ibl97In%2FHCuNDGO%2BNOW6qlWqqlWqqlWqqlWqqYUkwpphTzifnEfII92IM92IM92IM92IM92IM92I%2FD4%2FA4PA6Pw%2BPwODwOj8M%2Ff7kaaDXQyt7K3mqglcCVwNVAq4FWA60GWglZCVkJWQlZCVkJWQlZDbQyqhpoNdAPh3NAwCAAwwDM%2B7b2sg8kCjIO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO4zAO47AO67AO67AO67AO67AO67AO67AO67AO67AO67AO67AO63AO53AO53AO53AO53AO53AO53AO53AO53AO53AO53AO5xCHOMQhDnGIQxziEIc4xCEOcYhDHOIQhzjEIQ5xiEMd6lCHOtShDnWoQx3qUIc61KEOdahDHepQhzrUoQ6%2Fh%2BP6RpIjiKEoyOPvCARUoK9LctP5ZqXTop7q%2F6H%2F0H%2B4P9yfPz82bdm2Y9ee%2FT355bS3%2FdivDW9reFtDb4beDL0ZejP0ZujN0JuhN0Nvht4MvRl6M%2FRm6M3w1of3PVnJSlaykpWsZCUrWclKVrKSlaxkJStZySpWsYpVrGIVq1jFKlaxilWsYhWrWMUqVrGa1axmNatZzWpWs5rVrGY1q1nNalazmtWsYQ1rWMMa1rCGNaxhDWtYwxrWsIY1rGENa1nLWtaylrWsZS1rWcta1rKWtaxlLWtZyzrWsY51rGMd61jHOtaxjnWsYx3rWMc61rEeTf1o6kdTP%2F84rpMqCKAYhmH8Cfy2JjuLCPiYPDH1Y%2BrH1I%2BpH1M%2Fpn5M%2FZh6FEZhFEZhFEZhFEZhFEZhFFZhFVZhFVZhFVZhFVZhFVbhFE7hFE7hFE7hFE7hFE7hFCKgCChPHQFlc7I52ZxsTgQUAUVAEVAEFAFFQBFQBBQBRUARUAQUAUVAEVAEFAFFQBFQti5bl63L1mXrsnXZuggoAoqAIqAIKAKKgCKgCCgCioAioAgoAoqAIqAIKAKKgCKgCCgCyt5GQBFQBPTlwD7OEIaBKAxSOrmJVZa2TsJcwJ6r0%2F%2B9sBOGnTDshOF%2BDndyXG7k7vfh9%2Bn35fft978Thp2wKuqqqKtarmq58cYbb7zzzjvvfPDBBx988sknn3zxxRdfPHnyVPip8FPhp8JPhZ8KP78czLdxBDAMAMFc%2FbdAk4AERoMS5CpQOW82uWyPHexkJzvZyU52spOd7GQnu9jFLnaxi13sYhe72MVudrOb3exmN7vZzW52s8EGG2ywwQYbbLDBBnvZy172spe97GUve9nLJptssskmm2yyySabbLHFFltsscUWW2yxxX6%2B7P%2BrH%2Fqtf6%2B2Z3u2Z3u2Z3u2Z3u2Z3s%2BO66jKoYBGASA%2FiUFeLO2tqfgvhIgVkOshvj%2F8f%2FjF8VqiL8dqyG%2Bd4klllhiiSWWWGKJJY444ogjjjjiiCOO%2BPua0gPv7paRAHgBLcEDlNxQAADArI3Ydv7Vtm3btm3btm3btm3bD7VvBoIgLXVVqCf0ztXT9dzd3j3cvcX90CN5Snmae%2Fp45np2e356gbeH94HP8Q3x3feH%2FX38NwJwoHigQ2Ba4GBQCK4NfgxVDE0OnQr7w1nCI8P7wi8jdqR4ZGzkRDQSLRmdH%2F0UqxTrEVsbux%2FPHe8b3xh%2FlgglzESJRJfE6MS6ZChZJzkj%2BRouCA9GJKQuMhI5hsZRHR2A7kZ%2FYZWxldhtPDPeFd%2BIPybyE0OIy2SIrEy2IneSX8mvFKB6UpfodPQYeiOTjmnK3GOzsCPYpexaLjdXiRvBHeJ%2B8BX5Lvxe%2FqOACmWEnsJ60SsyYjqxiLhE3CoeE6%2BLL8RvUlRqJXWThkszpJXSbjkq83JaOZ9cXm4gd5IXKZACK4qSSSmiVFWmq0lVUtOr%2BdXyagO1oxbRSM3UsmnFtOpaC62nNkqbo7M60HPppfXaemu9j77X4IwUI49RxqhrtDWOGzeM92Y985lFWWWtcdZia4d10%2FpiU3YZu6%2B91j7rME5xp5szGVAgDcgBioDhYDpYDjaDE%2BAmeAW%2Bp8R%2FA5ajfCcAAAABAAAA3QCKABYAWAAFAAIAEAAvAFwAAAEAAQsAAwABeAF9jgNuRAEYhL%2FaDGoc4DluVNtug5pr8xh7jj3jTpK18pszwBDP9NHTP0IPs1DOexlmtpz3sc9iOe9nmddyPsA8%2BXI%2BqI1COZ%2FkliIXhPkiyDo3vCnG2CaEn0%2B2lH%2BgmfIvotowZa3769ULZST4K%2BcujqTb%2Fj36S4w%2FQmgDF0tWvalemNWLX%2BKSMBvYkhQSLG2FZR%2BafmERIsqPpn7%2ByvxjfMlsTjlihz3OuZE38bTtlAAa%2FTAFAHgBbMEDjJYBAADQ9%2F3nu2zbtm3b5p9t17JdQ7Zt21zmvGXXvJrZe0LA37Cw%2F3lDEBISIVKUaDFixYmXIJHEkkgqmeRSSCmV1NJIK530Msgok8yyyCqb7HLIKZfc8sgrn%2FwKKKiwIooqprgSSiqltDLKKqe8CiqqpLIqqqqmuhpqqqW2Ouqqp74GGmqksSaaaqa5FlpqpbU22mqnvQ466qSzLrrqprs9NpthprNWeWeWReZba6ctQYR5QaTplvvhp4VWm%2BOyt75bZ5fffvljk71uum6fHnpaopfbervhlvfCHnngof36%2BGappx57oq%2BPPpurv34GGGSgwTYYYpihhhthlJFGG%2BODscYbZ4JJJjphoykmm2qaT7445ZkDDnrujRcOOeyY46444qirZtvtnPPOBFG%2BBtFBTBAbxAXxQYJC7rvjrnv%2FxpJXmpPDXpqXaWDg6MKZX5ZaVJycX5TK4lpalA8SdnMyMITSRjxp%2BaVFxaUFqUWZ%2BUVQQWMobcKUlgYAHQ14sAAAeAFFSzVCLEEQ7fpjH113V1ybGPd1KRyiibEhxt1vsj3ZngE9AIfgBmMR5fVk8qElsRjHOHAYW%2BQwyumxct4bKxXkWDEvx7JjdszQNAZcekzi9Zho8oV8NCbnIT%2FfEXNRJwqmlaemnQMbN8E1OE7Mzb%2FP%2F8xzKZrEMA2hl3rQATa0Uxs2bN%2B2f8M2AEpwj5yQBvklvJ3AqRcEaMKrWq%2F19eWakl7NsZbyJoNblqlZc7KywcRbRnBjc00FeF6%2Fenoi05EcG62tsXhkPcdk87BHVC%2BZXleUPrOsUHaUI2tb4y%2F8OwbsTEAJAA%3D%3D%29%20format%28%22woff%22%29%7D%2A%7Bbox%2Dsizing%3Aborder%2Dbox%7Dbody%7Bpadding%3A0%3Bmargin%3A0%3Bfont%2Dfamily%3A%22Open%20Sans%22%2C%22Helvetica%20Neue%22%2CHelvetica%2CArial%2Csans%2Dserif%3Bfont%2Dsize%3A16px%3Bline%2Dheight%3A1%2E5%3Bcolor%3A%23606c71%7Da%7Bcolor%3A%231e6bb8%3Btext%2Ddecoration%3Anone%7Da%3Ahover%7Btext%2Ddecoration%3Aunderline%7D%2Epage%2Dheader%7Bcolor%3A%23fff%3Btext%2Dalign%3Acenter%3Bbackground%2Dcolor%3A%23159957%3Bbackground%2Dimage%3Alinear%2Dgradient%28120deg%2C%23155799%2C%23159957%29%3Bpadding%3A1%2E5rem%202rem%7D%2Eproject%2Dname%7Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A%2E1rem%3Bfont%2Dsize%3A2rem%7D%2Eproject%2Dtagline%7Bmargin%2Dbottom%3A2rem%3Bfont%2Dweight%3A400%3Bopacity%3A%2E7%3Bfont%2Dsize%3A1%2E5rem%7D%2Eproject%2Dauthor%2C%2Eproject%2Ddate%7Bfont%2Dweight%3A400%3Bopacity%3A%2E7%3Bfont%2Dsize%3A1%2E2rem%7D%40media%20screen%20and%20%28max%2Dwidth%3A%2042em%29%7B%2Epage%2Dheader%7Bpadding%3A1rem%7D%2Eproject%2Dname%7Bfont%2Dsize%3A1%2E75rem%7D%2Eproject%2Dtagline%7Bfont%2Dsize%3A1%2E2rem%7D%2Eproject%2Dauthor%2C%2Eproject%2Ddate%7Bfont%2Dsize%3A1rem%7D%7D%2Emain%2Dcontent%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20img%7Bmax%2Dwidth%3A100%25%7D%2Emain%2Dcontent%20h1%2C%2Emain%2Dcontent%20h2%2C%2Emain%2Dcontent%20h3%2C%2Emain%2Dcontent%20h4%2C%2Emain%2Dcontent%20h5%2C%2Emain%2Dcontent%20h6%7Bmargin%2Dtop%3A2rem%3Bmargin%2Dbottom%3A1rem%3Bfont%2Dweight%3A400%3Bcolor%3A%23159957%7D%2Emain%2Dcontent%20p%7Bmargin%2Dbottom%3A1em%7D%2Emain%2Dcontent%20code%7Bpadding%3A2px%204px%3Bfont%2Dfamily%3AConsolas%2C%22Liberation%20Mono%22%2CMenlo%2CCourier%2Cmonospace%3Bcolor%3A%23383e41%3Bbackground%2Dcolor%3A%23f3f6fa%3Bborder%2Dradius%3A%2E3rem%7D%2Emain%2Dcontent%20pre%7Bpadding%3A%2E8rem%3Bmargin%2Dtop%3A0%3Bmargin%2Dbottom%3A1rem%3Bfont%3A1rem%20Consolas%2C%22Liberation%20Mono%22%2CMenlo%2CCourier%2Cmonospace%3Bcolor%3A%23567482%3Bword%2Dwrap%3Anormal%3Bbackground%2Dcolor%3A%23f3f6fa%3Bborder%3Asolid%201px%20%23dce6f0%3Bborder%2Dradius%3A%2E3rem%3Bline%2Dheight%3A1%2E45%3Boverflow%3Aauto%7D%2Emain%2Dcontent%20pre%3E%20code%7Bpadding%3A0%3Bmargin%3A0%3Bfont%2Dsize%3A1rem%3Bcolor%3A%23567482%3Bword%2Dbreak%3Anormal%3Bwhite%2Dspace%3Apre%3Bbackground%3Atransparent%3Bborder%3A0%7D%2Emain%2Dcontent%20pre%20code%2C%2Emain%2Dcontent%20pre%20tt%7Bdisplay%3Ainline%3Bpadding%3A0%3Bline%2Dheight%3Ainherit%3Bword%2Dwrap%3Anormal%3Bbackground%2Dcolor%3Atransparent%3Bborder%3A0%7D%2Emain%2Dcontent%20pre%20code%3Abefore%2C%2Emain%2Dcontent%20pre%20code%3Aafter%2C%2Emain%2Dcontent%20pre%20tt%3Abefore%2C%2Emain%2Dcontent%20pre%20tt%3Aafter%7Bcontent%3Anormal%7D%2Emain%2Dcontent%20ul%2C%2Emain%2Dcontent%20ol%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20blockquote%7Bpadding%3A0%201rem%3Bmargin%2Dleft%3A0%3Bfont%2Dsize%3A1%2E2rem%3Bcolor%3A%23819198%3Bborder%2Dleft%3A%2E3rem%20solid%20%23dce6f0%7D%2Emain%2Dcontent%20blockquote%3E%3Afirst%2Dchild%7Bmargin%2Dtop%3A0%7D%2Emain%2Dcontent%20blockquote%3E%3Alast%2Dchild%7Bmargin%2Dbottom%3A0%7D%2Emain%2Dcontent%20table%7Bwidth%3A100%25%3Boverflow%3Aauto%3Bword%2Dbreak%3Anormal%3Bword%2Dbreak%3Akeep%2Dall%3Bborder%2Dcollapse%3Acollapse%3Bborder%2Dspacing%3A0%3Bmargin%3A1rem%200%7D%2Emain%2Dcontent%20table%20th%7Bfont%2Dweight%3A700%3Bbackground%2Dcolor%3A%234CAF50%3Bcolor%3A%23fff%7D%2Emain%2Dcontent%20table%20th%2C%2Emain%2Dcontent%20table%20td%7Bpadding%3A%2E5rem%201rem%3Bborder%2Dbottom%3A1px%20solid%20%23e9ebec%3Btext%2Dalign%3Aleft%7D%2Emain%2Dcontent%20table%20tr%3Anth%2Dchild%28odd%29%7Bbackground%2Dcolor%3A%23f2f2f2%7D%2Emain%2Dcontent%20dl%7Bpadding%3A0%7D%2Emain%2Dcontent%20dl%20dt%7Bpadding%3A0%3Bmargin%2Dtop%3A1rem%3Bfont%2Dsize%3A1rem%3Bfont%2Dweight%3A700%7D%2Emain%2Dcontent%20dl%20dd%7Bpadding%3A0%3Bmargin%2Dbottom%3A1rem%7D%2Emain%2Dcontent%20hr%7Bmargin%3A1rem%200%3Bborder%3A0%3Bheight%3A1px%3Bbackground%3A%23aaa%3Bbackground%2Dimage%3Alinear%2Dgradient%28to%20right%2C%23eee%2C%23aaa%2C%23eee%29%7D%2Emain%2Dcontent%2C%2Etoc%7Bmax%2Dwidth%3A64rem%3Bpadding%3A2rem%204rem%3Bmargin%3A0%20auto%3Bfont%2Dsize%3A1%2E1rem%7D%2Etoc%7Bpadding%2Dbottom%3A0%7D%2Etoc%20ul%7Bmargin%2Dbottom%3A0%7D%40media%20screen%20and%20%28min%2Dwidth%3A%2042em%29%20and%20%28max%2Dwidth%3A%2064em%29%7B%2Etoc%7Bpadding%3A2rem%202rem%200%7D%2Emain%2Dcontent%7Bpadding%3A2rem%7D%7D%40media%20screen%20and%20%28max%2Dwidth%3A%2042em%29%7B%2Etoc%7Bpadding%3A2rem%201rem%200%3Bfont%2Dsize%3A1rem%7D%2Emain%2Dcontent%7Bpadding%3A2rem%201rem%3Bfont%2Dsize%3A1rem%7D%2Emain%2Dcontent%20pre%2C%2Emain%2Dcontent%20pre%3E%20code%7Bfont%2Dsize%3A%2E9rem%7D%2Emain%2Dcontent%20blockquote%7Bfont%2Dsize%3A1%2E1rem%7D%7D%2Esite%2Dfooter%7Bpadding%2Dtop%3A2rem%3Bmargin%2Dtop%3A2rem%3Bborder%2Dtop%3Asolid%201px%20%23eff0f1%3Bfont%2Dsize%3A1rem%7D%2Esite%2Dfooter%2Downer%7Bdisplay%3Ablock%3Bfont%2Dweight%3A700%7D%2Esite%2Dfooter%2Dcredits%7Bcolor%3A%23819198%7D%0Acode%20%3E%20span%2Ekw%20%7B%20color%3A%20%23a71d5d%3B%20font%2Dweight%3A%20normal%3B%20%7D%20%0Acode%20%3E%20span%2Edt%20%7B%20color%3A%20%23795da3%3B%20%7D%20%0Acode%20%3E%20span%2Edv%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Ebn%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Efl%20%7B%20color%3A%20%230086b3%3B%20%7D%20%0Acode%20%3E%20span%2Ech%20%7B%20color%3A%20%234070a0%3B%20%7D%20%0Acode%20%3E%20span%2Est%20%7B%20color%3A%20%23183691%3B%20%7D%20%0Acode%20%3E%20span%2Eco%20%7B%20color%3A%20%23969896%3B%20font%2Dstyle%3A%20italic%3B%20%7D%20%0Acode%20%3E%20span%2Eot%20%7B%20color%3A%20%23007020%3B%20%7D%20%0A" rel="stylesheet" type="text/css" />
</head>
<body>
<section class="page-header">
<h1 class="title toc-ignore project-name">Network optimization Project</h1>
<h4 class="author project-author">Afsar Ali</h4>
</section>
<div id="TOC" class="toc">
<ul>
<li><a href="#objective">Objective</a></li>
<li><a href="#loading-and-cleaning-the-data">Loading and cleaning the data</a></li>
<li><a href="#netowrk-map">1 Netowrk Map</a></li>
<li><a href="#netowrk-map-with-fastest-route">2 Netowrk Map with Fastest Route</a></li>
<li><a href="#nd-plan-considering-cost-and-constraints">3 - 2nd Plan considering cost and constraints</a><ul>
<li><a href="#graph-the-min-cost-solution">Graph the Min Cost Solution</a></li>
</ul></li>
<li><a href="#last-plan-max-flow-with-many-constraints">4 - Last Plan Max Flow with many constraints</a><ul>
<li><a href="#graph-max-cost-solution">Graph Max Cost Solution</a></li>
</ul></li>
<li><a href="#last-plan-testing-max-flow-by-relaxing-some-constraints-to-congos">4 - Last Plan Testing Max Flow by relaxing some constraints to congos</a><ul>
<li><a href="#graph-max-cost-solution-1">Graph Max Cost Solution</a></li>
</ul></li>
<li><a href="#appendix-for-additional-igraph-data-structure">Appendix for additional igraph data structure</a><ul>
<li><a href="#fuction-to-run-matrix">Fuction to run Matrix</a></li>
</ul></li>
<li><a href="#using-i-graph-to-calculate-min-and-max-didnt-work">Using I graph to calculate min and max (didnt work)</a></li>
</ul>
</div>
<section class="main-content">
<div id="objective" class="section level1">
<h1>Objective</h1>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Course: BUAN 5260</span>
<span class="co"># Title: Week 4-Network optimization</span>
<span class="co"># Purpose: USE IFRC Information information to model scenarios </span>
<span class="co"># and make Recommendation Plans</span>
<span class="co"># Author: Afsar Ali</span></code></pre></div>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Clear packages </span>
<span class="cf">if</span>(<span class="kw">is.null</span>(<span class="kw">sessionInfo</span>()<span class="op">$</span>otherPkgs) <span class="op">==</span><span class="st"> </span><span class="ot">FALSE</span>)<span class="kw">lapply</span>(
<span class="kw">paste</span>(<span class="st">"package:"</span>, <span class="kw">names</span>(<span class="kw">sessionInfo</span>()<span class="op">$</span>otherPkgs), <span class="dt">sep=</span><span class="st">""</span>),
detach, <span class="dt">character.only =</span> <span class="ot">TRUE</span>, <span class="dt">unload =</span> <span class="ot">TRUE</span>)
<span class="co"># Clear all data in environment</span>
<span class="kw">rm</span>(<span class="dt">list=</span><span class="kw">ls</span>(<span class="dt">all=</span><span class="ot">TRUE</span>))
<span class="co"># Load packages</span>
<span class="kw">library</span>(igraph)
<span class="kw">library</span>(lpSolve)
<span class="kw">library</span>(lpSolveAPI)
<span class="kw">library</span>(tidyverse)
<span class="kw">library</span>(magrittr)
<span class="kw">library</span>(data.table)
<span class="kw">set.seed</span>(<span class="dv">123</span>)</code></pre></div>
</div>
<div id="loading-and-cleaning-the-data" class="section level1">
<h1>Loading and cleaning the data</h1>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#load Data </span>
ifrc <-<span class="st"> </span><span class="kw">read.csv</span>(<span class="st">"5260_S18_Aiding_Africa_Data.csv"</span>, <span class="dt">skip =</span> <span class="dv">1</span>)
<span class="co">#Naming and Creating each table</span>
req_trv <-<span class="st"> </span>ifrc[<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>,<span class="dv">1</span><span class="op">:</span><span class="dv">3</span>]
mdata <-<span class="st"> </span>ifrc[,<span class="dv">8</span><span class="op">:</span><span class="dv">12</span>]
req <-<span class="st"> </span>ifrc[<span class="dv">1</span><span class="op">:</span><span class="dv">9</span>,<span class="dv">14</span><span class="op">:</span><span class="dv">15</span>]
air_max <-<span class="st"> </span>ifrc[<span class="dv">1</span><span class="op">:</span><span class="dv">15</span>,<span class="dv">17</span><span class="op">:</span><span class="dv">19</span>]
truck_max <-<span class="st"> </span>ifrc[<span class="dv">1</span><span class="op">:</span><span class="dv">6</span>,<span class="dv">21</span><span class="op">:</span><span class="dv">23</span>]
<span class="co">#create nodes</span>
req<span class="op">$</span>Requirements <-<span class="st"> </span>req<span class="op">$</span>Requirements <span class="op">*-</span><span class="dv">1</span>
req<span class="op">$</span>City <-<span class="st"> </span><span class="kw">as.character</span>(req<span class="op">$</span>City)
nodes<-<span class="st"> </span><span class="kw">rbind</span>(<span class="st">'1'</span> =<span class="st"> </span><span class="kw">c</span>(<span class="st">'New York, NY'</span>, <span class="st">'500000'</span>), <span class="st">'2'</span> =<span class="st"> </span><span class="kw">c</span>(<span class="st">'Jacksonville, FL'</span>, <span class="st">'500000'</span>), req)
nodes<span class="op">$</span>Requirements <-<span class="st"> </span><span class="kw">as.integer</span>(nodes<span class="op">$</span>Requirements)
<span class="co"># Join the tables and create edges</span>
edges <-<span class="st"> </span>mdata <span class="op">%>%</span>
<span class="st"> </span><span class="kw">left_join</span>(req_trv, <span class="dt">by =</span> <span class="kw">c</span>(<span class="st">"Type.1"</span> =<span class="st"> "Type"</span>)) <span class="op">%>%</span>
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">Time =</span> Distance <span class="op">/</span><span class="st"> </span>Speed) <span class="op">%>%</span>
<span class="st"> </span><span class="kw">mutate</span>(<span class="dt">Cost =</span> Cost <span class="op">*</span><span class="st"> </span><span class="dv">1000</span>) <span class="op">%>%</span>
<span class="st"> </span><span class="kw">left_join</span>(air_max, <span class="dt">by =</span> <span class="kw">c</span>(<span class="st">"From"</span> =<span class="st"> "From.1"</span>, <span class="st">"To"</span> =<span class="st"> "To.1"</span>)) <span class="op">%>%</span>
<span class="st"> </span><span class="kw">left_join</span>(truck_max, <span class="dt">by =</span> <span class="kw">c</span>(<span class="st">"From"</span> =<span class="st"> "From.2"</span>, <span class="st">"To"</span> =<span class="st"> "To.2"</span>))
<span class="kw">colnames</span>(edges)[<span class="dv">3</span>] <-<span class="st"> 'Type'</span>
<span class="co">#create constraints</span>
edges<span class="op">$</span>Max.Airplanes <-<span class="st"> </span>edges<span class="op">$</span>Max.Airplanes <span class="op">*</span><span class="st"> </span>edges<span class="op">$</span>Capacity
edges<span class="op">$</span>Max.Trucks <-<span class="st"> </span>edges<span class="op">$</span>Max.Trucks <span class="op">*</span><span class="st"> </span>edges<span class="op">$</span>Capacity
edges<span class="op">$</span>Max.Airplanes[<span class="kw">is.na</span>(edges<span class="op">$</span>Max.Airplanes)] <-<span class="st"> </span><span class="dv">0</span>
edges<span class="op">$</span>Max.Trucks[<span class="kw">is.na</span>(edges<span class="op">$</span>Max.Trucks)] <-<span class="st"> </span><span class="dv">0</span>
edges<span class="op">$</span>Max <-<span class="st"> </span>edges<span class="op">$</span>Max.Trucks <span class="op">+</span><span class="st"> </span>edges<span class="op">$</span>Max.Airplanes
edges<span class="op">$</span>Max[<span class="kw">is.na</span>(edges<span class="op">$</span>Max)] <-<span class="st"> </span><span class="dv">0</span>
<span class="co">#Network ID</span>
edges<span class="op">$</span>ID <-<span class="st"> </span><span class="kw">paste</span>(edges<span class="op">$</span>From, edges<span class="op">$</span>To, <span class="dt">sep =</span> <span class="st">' > '</span>)</code></pre></div>
</div>
<div id="netowrk-map" class="section level1">
<h1>1 Netowrk Map</h1>
<ul>
<li>Make sense all the Air Routes are the Fastest</li>
</ul>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">net <-<span class="st"> </span><span class="kw">graph_from_data_frame</span>(<span class="dt">d=</span>edges, <span class="dt">vertices=</span>nodes, <span class="dt">directed=</span>T)
net<span class="op">$</span>layout <-<span class="st"> </span><span class="kw">matrix</span>(<span class="kw">c</span>(<span class="op">-</span><span class="dv">800</span>, <span class="op">-</span><span class="dv">800</span>,
<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,
<span class="dv">800</span>, <span class="dv">800</span>, <span class="dv">800</span>,
<span class="dv">225</span>, <span class="dv">125</span>,
<span class="dv">300</span>, <span class="dv">250</span>, <span class="dv">200</span>, <span class="dv">150</span>, <span class="dv">100</span>, <span class="dv">50</span>,
<span class="dv">250</span>, <span class="dv">175</span>, <span class="dv">100</span>), <span class="dt">nc =</span> <span class="dv">2</span>)
<span class="co">#Set Weight for Edges</span>
<span class="kw">E</span>(net)<span class="op">$</span>weight =<span class="st"> </span><span class="kw">E</span>(net)<span class="op">$</span>Time
<span class="co">#Create a Unique col</span>
edges<span class="op">$</span>ID <-<span class="st"> </span><span class="kw">paste</span>(edges<span class="op">$</span>From, edges<span class="op">$</span>To, <span class="dt">sep =</span> <span class="st">' > '</span>)
<span class="co">#Add route attribute</span>
<span class="kw">V</span>(net)<span class="op">$</span>route <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"From"</span>,<span class="st">"From"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>)
<span class="kw">V</span>(net)<span class="op">$</span>color <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"gold"</span>,<span class="st">"green"</span>)[<span class="dv">1</span><span class="op">+</span>(<span class="kw">V</span>(net)<span class="op">$</span>route<span class="op">==</span><span class="st">"From"</span>)]
<span class="co">#look at the data</span>
<span class="kw">glimpse</span>(edges)</code></pre></div>
<pre><code>## Observations: 30
## Variables: 12
## $ From <chr> "New York, NY", "New York, NY", "New York, NY", ...
## $ To <chr> "Lusaka, Zambia", "Libreville, Gabon", "Nairobi,...
## $ Type <chr> "Airplane", "Ship", "Airplane", "Airplane", "Shi...
## $ Distance <int> 8098, 6024, 8050, 7041, 6526, 4172, 7944, 6329, ...
## $ Cost <dbl> 50000, 30000, 55000, 45000, 30000, 32000, 57000,...
## $ Capacity <dbl> 150.0, 240.0, 150.0, 150.0, 240.0, 240.0, 150.0,...
## $ Speed <int> 400, 35, 400, 400, 35, 35, 400, 35, 400, 400, 35...
## $ Time <dbl> 20.2450, 172.1143, 20.1250, 17.6025, 186.4571, 1...
## $ Max.Airplanes <dbl> 45000, 0, 75000, 75000, 0, 0, 75000, 0, 105000, ...
## $ Max.Trucks <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...
## $ Max <dbl> 45000, 0, 75000, 75000, 0, 0, 75000, 0, 105000, ...
## $ ID <chr> "New York, NY > Lusaka, Zambia", "New York, NY >...</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Get some colours in to visualise routes</span>
<span class="kw">E</span>(net)<span class="op">$</span>color[<span class="kw">E</span>(net)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Truck'</span>] <-<span class="st"> 'saddlebrown'</span>
<span class="kw">E</span>(net)<span class="op">$</span>color[<span class="kw">E</span>(net)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Airplane'</span>] <-<span class="st"> 'forestgreen'</span>
<span class="kw">E</span>(net)<span class="op">$</span>color[<span class="kw">E</span>(net)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Ship'</span>] <-<span class="st"> 'royalblue'</span>
<span class="co">#Plot Network Map</span>
<span class="kw">plot</span>(net, <span class="dt">edge.arrow.size=</span>.<span class="dv">3</span>, <span class="dt">edge.label =</span> <span class="kw">round</span>(<span class="kw">E</span>(net)<span class="op">$</span>Time, <span class="dv">2</span>),
<span class="dt">edge.width =</span> <span class="dv">10</span><span class="op">*</span><span class="kw">E</span>(net)<span class="op">$</span>Time<span class="op">/</span><span class="kw">max</span>(<span class="kw">E</span>(net)<span class="op">$</span>Time),
<span class="dt">vertex.size=</span><span class="dv">25</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="netowrk-map-with-fastest-route" class="section level1">
<h1>2 Netowrk Map with Fastest Route</h1>
<p>-Bottlenecks are on Dakar, Senegal, Libreville, Garbon, Luanda, Angola -Quickest route is 20.60 hours From New York to Ndjamena, Chad +New York, NY > Kosongo, D.R. Congo = 21.04<br />
+New York, NY > Ndjamena, Chad = 20.60<br />
+New York, NY > Niamey, Niger = 22.76 +Jacksonville, FL > Kosongo, D.R. Congo = 21.15<br />
+Jacksonville, FL > Ndjamena, Chad = 20.71<br />
+Jacksonville, FL > Niamey, Niger = 22.87</p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#Create Table for shortest time</span>
distMatrix <-<span class="st"> </span><span class="kw">shortest.paths</span>(net, <span class="dt">v=</span><span class="kw">V</span>(net), <span class="dt">to=</span><span class="kw">V</span>(net))
<span class="kw">as.data.frame</span>(distMatrix)</code></pre></div>
<pre><code>## New York, NY Jacksonville, FL Dakar, Senegal
## New York, NY 0.0000 35.3125 55.8850
## Jacksonville, FL 35.3125 0.0000 55.9925
## Dakar, Senegal 55.8850 55.9925 0.0000
## Libreville, Gabon 43.4050 43.5125 53.7600
## Luanda, Angola 48.8250 48.9325 69.5050
## Khartoum, Sudan 17.6025 17.7100 38.2825
## Lusaka, Zambia 20.2450 19.8600 43.2950
## Nairobi, Kenya 20.1250 19.9025 39.4300
## Niamey, Niger 22.7650 22.8725 33.1200
## Kosongo, D.R. Congo 21.0450 21.1525 41.7250
## Ndjamena, Chad 20.6025 20.7100 41.2825
## Libreville, Gabon Luanda, Angola Khartoum, Sudan
## New York, NY 43.4050 48.8250 17.6025
## Jacksonville, FL 43.5125 48.9325 17.7100
## Dakar, Senegal 53.7600 69.5050 38.2825
## Libreville, Gabon 0.0000 57.0250 25.8025
## Luanda, Angola 57.0250 0.0000 31.2225
## Khartoum, Sudan 25.8025 31.2225 0.0000
## Lusaka, Zambia 30.8150 29.6450 5.3075
## Nairobi, Kenya 26.9500 30.5050 6.1675
## Niamey, Niger 20.6400 36.3850 5.1625
## Kosongo, D.R. Congo 29.2450 27.7800 3.4425
## Ndjamena, Chad 28.3000 34.2225 3.0000
## Lusaka, Zambia Nairobi, Kenya Niamey, Niger
## New York, NY 20.2450 20.1250 22.7650
## Jacksonville, FL 19.8600 19.9025 22.8725
## Dakar, Senegal 43.2950 39.4300 33.1200
## Libreville, Gabon 30.8150 26.9500 20.6400
## Luanda, Angola 29.6450 30.5050 36.3850
## Khartoum, Sudan 5.3075 6.1675 5.1625
## Lusaka, Zambia 0.0000 4.5900 10.1750
## Nairobi, Kenya 4.5900 0.0000 6.3100
## Niamey, Niger 10.1750 6.3100 0.0000
## Kosongo, D.R. Congo 1.8650 2.7250 8.6050
## Ndjamena, Chad 5.2750 4.4200 8.1625
## Kosongo, D.R. Congo Ndjamena, Chad
## New York, NY 21.0450 20.6025
## Jacksonville, FL 21.1525 20.7100
## Dakar, Senegal 41.7250 41.2825
## Libreville, Gabon 29.2450 28.3000
## Luanda, Angola 27.7800 34.2225
## Khartoum, Sudan 3.4425 3.0000
## Lusaka, Zambia 1.8650 5.2750
## Nairobi, Kenya 2.7250 4.4200
## Niamey, Niger 8.6050 8.1625
## Kosongo, D.R. Congo 0.0000 6.4425
## Ndjamena, Chad 6.4425 0.0000</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">all_shortest_paths</span>(net, <span class="kw">c</span>(<span class="st">"New York, NY"</span>, <span class="st">'Jacksonville, FL'</span>),
<span class="kw">c</span>(<span class="st">'Kosongo, D.R. Congo'</span> ,<span class="st">"Ndjamena, Chad"</span>,
<span class="st">'Niamey, Niger'</span>))<span class="op">$</span>res[[<span class="dv">1</span>]]</code></pre></div>
<pre><code>## + 3/11 vertices, named, from 74ae952:
## [1] New York, NY Khartoum, Sudan Niamey, Niger</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># New York, NY > Khartoum, Sudan > Niamey, Niger </span>
<span class="kw">distances</span>(net, <span class="kw">c</span>(<span class="st">"New York, NY"</span>, <span class="st">'Jacksonville, FL'</span>),
<span class="kw">c</span>(<span class="st">'Kosongo, D.R. Congo'</span> ,<span class="st">"Ndjamena, Chad"</span>,
<span class="st">'Niamey, Niger'</span>))</code></pre></div>
<pre><code>## Kosongo, D.R. Congo Ndjamena, Chad Niamey, Niger
## New York, NY 21.0450 20.6025 22.7650
## Jacksonville, FL 21.1525 20.7100 22.8725</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Kosongo, D.R. Congo Ndjamena, Chad Niamey, Niger</span>
<span class="co">#New York, NY 21.04 20.60 22.76</span>
<span class="co">#Jacksonville, FL 21.15 20.71 22.87</span>
shortMatrix<-<span class="st"> </span><span class="kw">mst</span>(net, <span class="dt">weights =</span> <span class="ot">NULL</span>)
shortMatrix</code></pre></div>
<pre><code>## IGRAPH 74d2300 DNW- 11 10 --
## + attr: layout (g/n), name (v/c), Requirements (v/n), route (v/c),
## | color (v/c), Type (e/c), Distance (e/n), Cost (e/n), Capacity
## | (e/n), Speed (e/n), Time (e/n), Max.Airplanes (e/n), Max.Trucks
## | (e/n), Max (e/n), ID (e/c), weight (e/n), color (e/c)
## + edges from 74d2300 (vertex names):
## [1] New York, NY ->Khartoum, Sudan
## [2] Jacksonville, FL ->Khartoum, Sudan
## [3] Libreville, Gabon->Niamey, Niger
## [4] Khartoum, Sudan ->Niamey, Niger
## [5] Dakar, Senegal ->Niamey, Niger
## + ... omitted several edges</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="kw">plot</span>(shortMatrix, <span class="dt">edge.arrow.size=</span>.<span class="dv">2</span>, <span class="dt">edge.label =</span> <span class="kw">round</span>(<span class="kw">E</span>(net)<span class="op">$</span>Time, <span class="dv">2</span>))</code></pre></div>
<p><img src="" /><!-- --></p>
</div>
<div id="nd-plan-considering-cost-and-constraints" class="section level1">
<h1>3 - 2nd Plan considering cost and constraints</h1>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#Part 3 - Min Cost</span>
<span class="co"># Set up model</span>
min_cost <-<span class="st"> </span><span class="kw">make.lp</span>(<span class="dv">0</span>, <span class="dv">30</span>)
## Set objective fn
obj_fn <-<span class="st"> </span><span class="kw">as.integer</span>(<span class="kw">as.vector</span>(edges<span class="op">$</span>Cost))
<span class="kw">set.objfn</span>(min_cost, obj_fn)
<span class="co"># Set up constraints</span>
<span class="co">#Input</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">150</span>, <span class="dv">240</span>, <span class="dv">150</span>, <span class="dv">150</span>, <span class="dv">240</span>, <span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="dv">500000</span>) <span class="co">#NY</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">150</span>, <span class="dv">240</span>, <span class="dv">150</span>, <span class="dv">150</span>, <span class="dv">240</span>
, <span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="dv">500000</span>) <span class="co">#FL</span>
<span class="co">#City Requirements </span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>(<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">150</span>, <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">150000</span>) <span class="co">#Lusaka</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="op">-</span><span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">100000</span>) <span class="co">#Libreville</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">120000</span>) <span class="co">#Nairobi</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> ,<span class="dv">150</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">90000</span>) <span class="co">#Khartoum</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">240</span> , <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span>
,<span class="op">-</span><span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">130000</span>) <span class="co">#Luanda</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span> ,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="op">-</span><span class="dv">240</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="fl">17.7</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">50000</span>) <span class="co">#Dakar</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span> , <span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="dv">150</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">100000</span>) <span class="co">#Niamey Air routes only</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,
<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="fl">17.7</span>, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"="</span>, <span class="op">-</span><span class="dv">180000</span>) <span class="co">#Kosongo</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="dv">150</span> ,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="fl">17.7</span>), <span class="st">"="</span>, <span class="op">-</span><span class="dv">80000</span>) <span class="co">#Ndjamena</span>
<span class="co">#additional constraint</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">1</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">1</span> ,<span class="dv">1</span>), <span class="st">"<="</span>, <span class="dv">840</span>) <span class="co">#Ndjmamena Truck constraint</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">1</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"<="</span>, (<span class="dv">200</span>)) <span class="co">#200 flights from tLusaka-Ndjmamena constrain</span>
<span class="kw">add.constraint</span>(min_cost, <span class="kw">c</span>( <span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> ,<span class="dv">0</span> , <span class="dv">0</span>
,<span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span>
, <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> , <span class="dv">0</span> ,<span class="dv">1</span> , <span class="dv">0</span> , <span class="dv">0</span> ), <span class="st">"<="</span>, (<span class="dv">200</span>)) <span class="co">#200 flights from Khartoum-Ndjmamena constraint</span>
<span class="co">#set names</span>
<span class="kw">dimnames</span>(min_cost) <-<span class="st"> </span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">"New York"</span>, <span class="st">"Jacksonville"</span>,<span class="st">"Lusaka"</span>,
<span class="st">"Libreville"</span>, <span class="st">"Nairobi"</span>, <span class="st">"Khartoum"</span>, <span class="st">"Luanda"</span>,
<span class="st">"Dakar"</span>, <span class="st">"Niamey"</span>, <span class="st">"Kosongo"</span>, <span class="st">"Ndjamena"</span>,
<span class="st">"Ndjamena Truck Limit"</span>, <span class="st">"Lusaka->Ndjmamena limited Flights"</span>,
<span class="st">"Khartoum->Ndjmamena limited Flights"</span>), <span class="kw">as.vector</span>(edges<span class="op">$</span>ID) )
<span class="co"># Write to view the algebraic formulation</span>
<span class="kw">write.lp</span>(min_cost, <span class="st">"5260_S18_minterm_min_cost.lp"</span>,<span class="dt">type =</span> <span class="st">'lp'</span>)
<span class="co"># Solve the model</span>
<span class="kw">solve</span>(min_cost)</code></pre></div>
<pre><code>## [1] 0</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Make results and sensitivity table </span>
ps <-<span class="st"> </span><span class="kw">get.primal.solution</span>(min_cost)
obj_sa <-<span class="st"> </span><span class="kw">get.sensitivity.obj</span>(min_cost)
rhs_sa <-<span class="st"> </span><span class="kw">get.sensitivity.rhs</span>(min_cost)
nv <-<span class="st"> </span><span class="kw">length</span>(<span class="kw">get.variables</span>(min_cost))
mc <-<span class="st"> </span><span class="kw">length</span>(<span class="kw">get.constr.type</span>(min_cost))
ov <-<span class="st"> </span><span class="kw">paste0</span>(<span class="st">"Objective Value = "</span>, ps[<span class="dv">1</span>])
sa_tab <-<span class="st"> </span><span class="kw">rbind</span>(ps[<span class="dv">2</span><span class="op">:</span>(nv <span class="op">+</span><span class="st"> </span>mc <span class="op">+</span><span class="st"> </span><span class="dv">1</span>)],
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>duals[<span class="dv">1</span><span class="op">:</span>mc], obj_fn), <span class="dv">2</span>),
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>dualsfrom[<span class="dv">1</span><span class="op">:</span>mc],obj_sa<span class="op">$</span>objfrom), <span class="dv">2</span>),
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>dualstill[<span class="dv">1</span><span class="op">:</span>mc],obj_sa<span class="op">$</span>objtill), <span class="dv">2</span>))
<span class="kw">colnames</span>(sa_tab) <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">rownames</span>(min_cost), <span class="kw">colnames</span>(min_cost))
<span class="kw">rownames</span>(sa_tab) <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"solution"</span>, <span class="st">"duals/coef"</span>, <span class="st">"Sens From"</span>, <span class="st">"Sens Till"</span>)
<span class="co"># Objective value and sensitivity analysis table Transposing for better quality </span>
m1<-<span class="st"> </span><span class="kw">as.data.frame</span>(sa_tab)
tm1 <-<span class="st"> </span><span class="kw">transpose</span>(m1)
<span class="kw">setnames</span>(tm1, <span class="kw">rownames</span>(m1))
<span class="kw">colnames</span>(tm1) <-<span class="st"> </span><span class="kw">rownames</span>(m1)
<span class="kw">rownames</span>(tm1) <-<span class="st"> </span><span class="kw">colnames</span>(m1)
ov</code></pre></div>
<pre><code>## [1] "Objective Value = 310861299.435028"</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tm1</code></pre></div>
<pre><code>## solution duals/coef
## New York 500000.0000 373.33
## Jacksonville 500000.0000 420.00
## Lusaka -150000.0000 40.00
## Libreville -100000.0000 248.33
## Nairobi -120000.0000 13.33
## Khartoum -90000.0000 93.33
## Luanda -130000.0000 248.33
## Dakar -50000.0000 240.00
## Niamey -100000.0000 -53.33
## Kosongo -180000.0000 22.34
## Ndjamena -80000.0000 0.00
## Ndjamena Truck Limit 0.0000 0.00
## Lusaka->Ndjmamena limited Flights 0.0000 0.00
## Khartoum->Ndjmamena limited Flights 200.0000 -10000.00
## New York, NY > Lusaka, Zambia 266.6667 50000.00
## New York, NY > Libreville, Gabon 1166.6667 30000.00
## New York, NY > Nairobi, Kenya 0.0000 55000.00
## New York, NY > Khartoum, Sudan 0.0000 45000.00
## New York, NY > Luanda, Angola 541.6667 30000.00
## New York, NY > Dakar, Senegal 208.3333 32000.00
## Jacksonville, FL > Lusaka, Zambia 733.3333 57000.00
## Jacksonville, FL > Libreville, Gabon 0.0000 48000.00
## Jacksonville, FL > Nairobi, Kenya 1133.3333 61000.00
## Jacksonville, FL > Khartoum, Sudan 1466.6667 49000.00
## Jacksonville, FL > Luanda, Angola 0.0000 44000.00
## Jacksonville, FL > Dakar, Senegal 0.0000 56000.00
## Lusaka, Zambia > Niamey, Niger 0.0000 24000.00
## Libreville, Gabon > Niamey, Niger 0.0000 3000.00
## Nairobi, Kenya > Niamey, Niger 0.0000 28000.00
## Khartoum, Sudan > Niamey, Niger 666.6667 22000.00
## Luanda, Angola > Niamey, Niger 0.0000 3000.00
## Dakar, Senegal > Niamey, Niger 0.0000 5000.00
## Lusaka, Zambia > Kosongo, D.R. Congo 0.0000 22000.00
## Libreville, Gabon > Kosongo, D.R. Congo 10169.4915 4000.00
## Nairobi, Kenya > Kosongo, D.R. Congo 0.0000 25000.00
## Khartoum, Sudan > Kosongo, D.R. Congo 0.0000 19000.00
## Luanda, Angola > Kosongo, D.R. Congo 0.0000 5000.00
## Dakar, Senegal > Kosongo, D.R. Congo 0.0000 5000.00
## Lusaka, Zambia > Ndjamena, Chad 0.0000 23000.00
## Libreville, Gabon > Ndjamena, Chad 0.0000 7000.00
## Nairobi, Kenya > Ndjamena, Chad 333.3333 2000.00
## Khartoum, Sudan > Ndjamena, Chad 200.0000 4000.00
## Luanda, Angola > Ndjamena, Chad 0.0000 8000.00
## Dakar, Senegal > Ndjamena, Chad 0.0000 9000.00
## Sens From Sens Till
## New York 5.000000e+05 5.0000e+05
## Jacksonville 5.000000e+05 5.0000e+05
## Lusaka -1.500000e+05 -1.5000e+05
## Libreville -1.000000e+05 -1.0000e+05
## Nairobi -1.200000e+05 -1.2000e+05
## Khartoum -9.000000e+04 -9.0000e+04
## Luanda -1.300000e+05 -1.3000e+05
## Dakar -5.000000e+04 -5.0000e+04
## Niamey -1.000000e+05 -1.0000e+05
## Kosongo -1.800000e+05 -1.8000e+05
## Ndjamena -1.000000e+30 1.0000e+30
## Ndjamena Truck Limit -1.000000e+30 1.0000e+30
## Lusaka->Ndjmamena limited Flights -1.000000e+30 1.0000e+30
## Khartoum->Ndjmamena limited Flights 0.000000e+00 5.3333e+02
## New York, NY > Lusaka, Zambia 4.825000e+04 5.1000e+04
## New York, NY > Libreville, Gabon -5.315250e+03 3.6800e+04
## New York, NY > Nairobi, Kenya 5.400000e+04 1.0000e+30
## New York, NY > Khartoum, Sudan 4.200000e+04 1.0000e+30
## New York, NY > Luanda, Angola 1.644068e+04 3.2800e+04
## New York, NY > Dakar, Senegal 1.644068e+04 4.4800e+04
## Jacksonville, FL > Lusaka, Zambia 5.600000e+04 5.8750e+04
## Jacksonville, FL > Libreville, Gabon 4.120000e+04 1.0000e+30
## Jacksonville, FL > Nairobi, Kenya 5.100000e+04 6.2000e+04
## Jacksonville, FL > Khartoum, Sudan 4.064831e+04 5.2000e+04
## Jacksonville, FL > Luanda, Angola 4.120000e+04 1.0000e+30
## Jacksonville, FL > Dakar, Senegal 4.320000e+04 1.0000e+30
## Lusaka, Zambia > Niamey, Niger 1.400000e+04 1.0000e+30
## Libreville, Gabon > Niamey, Niger 3.000000e+03 1.0000e+30
## Nairobi, Kenya > Niamey, Niger 1.000000e+04 1.0000e+30
## Khartoum, Sudan > Niamey, Niger -1.000000e+30 3.2000e+04
## Luanda, Angola > Niamey, Niger 3.000000e+03 1.0000e+30
## Dakar, Senegal > Niamey, Niger 5.000000e+03 1.0000e+30
## Lusaka, Zambia > Kosongo, D.R. Congo 2.648310e+03 1.0000e+30
## Libreville, Gabon > Kosongo, D.R. Congo -1.000000e+30 4.9855e+03
## Nairobi, Kenya > Kosongo, D.R. Congo -1.351690e+03 1.0000e+30
## Khartoum, Sudan > Kosongo, D.R. Congo 1.064831e+04 1.0000e+30
## Luanda, Angola > Kosongo, D.R. Congo 4.000000e+03 1.0000e+30
## Dakar, Senegal > Kosongo, D.R. Congo 3.852500e+03 1.0000e+30
## Lusaka, Zambia > Ndjamena, Chad 6.000000e+03 1.0000e+30
## Libreville, Gabon > Ndjamena, Chad 4.395500e+03 1.0000e+30
## Nairobi, Kenya > Ndjamena, Chad -8.000000e+03 1.9000e+04
## Khartoum, Sudan > Ndjamena, Chad -1.000000e+30 1.4000e+04
## Luanda, Angola > Ndjamena, Chad 4.395500e+03 1.0000e+30
## Dakar, Senegal > Ndjamena, Chad 4.248000e+03 1.0000e+30</code></pre>
<div id="graph-the-min-cost-solution" class="section level2">
<h2>Graph the Min Cost Solution</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Include solution in edges dataframe</span>
edges<span class="op">$</span>flow <-<span class="st"> </span><span class="kw">get.variables</span>(min_cost)
edges<span class="op">$</span>Mincost <-<span class="st"> </span>edges<span class="op">$</span>flow <span class="op">*</span><span class="st"> </span>edges<span class="op">$</span>Cost
g <-<span class="st"> </span>edges <span class="op">%>%</span>
<span class="st"> </span><span class="co"># creating igraph: "from" and "to" fields in the first two colums</span>
<span class="st"> </span><span class="kw">select</span>(From, To, ID, Capacity, Cost, Type, flow, Mincost) <span class="op">%>%</span>
<span class="st"> </span><span class="co"># Make into graph object</span>
<span class="st"> </span><span class="kw">graph_from_data_frame</span>()
<span class="co">#Add route attribute</span>
<span class="kw">V</span>(g)<span class="op">$</span>route <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"From"</span>,<span class="st">"From"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>)
<span class="kw">V</span>(g)<span class="op">$</span>color <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"gold"</span>,<span class="st">"green"</span>)[<span class="dv">1</span><span class="op">+</span>(<span class="kw">V</span>(net)<span class="op">$</span>route<span class="op">==</span><span class="st">"From"</span>)]
<span class="co"># Get some colours in to visualise routes</span>
<span class="kw">E</span>(g)<span class="op">$</span>color[<span class="kw">E</span>(g)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Truck'</span>] <-<span class="st"> 'saddlebrown'</span>
<span class="kw">E</span>(g)<span class="op">$</span>color[<span class="kw">E</span>(g)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Airplane'</span>] <-<span class="st"> 'forestgreen'</span>
<span class="kw">E</span>(g)<span class="op">$</span>color[<span class="kw">E</span>(g)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Ship'</span>] <-<span class="st"> 'royalblue'</span>
<span class="kw">E</span>(g)<span class="op">$</span>color[<span class="kw">E</span>(g)<span class="op">$</span>Mincost <span class="op">==</span><span class="st"> </span><span class="dv">0</span>] <-<span class="st"> 'white'</span>
g<span class="op">$</span>layout <-<span class="st"> </span><span class="kw">matrix</span>(<span class="kw">c</span>(<span class="op">-</span><span class="dv">800</span>, <span class="op">-</span><span class="dv">800</span>,
<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,
<span class="dv">800</span>, <span class="dv">800</span>, <span class="dv">800</span>,
<span class="dv">225</span>, <span class="dv">125</span>,
<span class="dv">300</span>, <span class="dv">250</span>, <span class="dv">200</span>, <span class="dv">150</span>, <span class="dv">100</span>, <span class="dv">50</span>,
<span class="dv">250</span>, <span class="dv">175</span>, <span class="dv">100</span>), <span class="dt">nc =</span> <span class="dv">2</span>)
<span class="kw">get.variables</span>(min_cost)</code></pre></div>
<pre><code>## [1] 266.6667 1166.6667 0.0000 0.0000 541.6667 208.3333
## [7] 733.3333 0.0000 1133.3333 1466.6667 0.0000 0.0000
## [13] 0.0000 0.0000 0.0000 666.6667 0.0000 0.0000
## [19] 0.0000 10169.4915 0.0000 0.0000 0.0000 0.0000
## [25] 0.0000 0.0000 333.3333 200.0000 0.0000 0.0000</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Flow as edge size and colour</span>
<span class="kw">plot</span>(g, <span class="dt">edge.width =</span> <span class="dv">15</span><span class="op">*</span><span class="kw">E</span>(g)<span class="op">$</span>Mincost<span class="op">/</span><span class="kw">max</span>(<span class="kw">E</span>(g)<span class="op">$</span>Mincost),
<span class="dt">edge.arrow.size=</span>.<span class="dv">4</span>,
<span class="dt">edge.label =</span> <span class="kw">as.integer</span>(<span class="kw">E</span>(g)<span class="op">$</span>Mincost), <span class="dt">vertex.size=</span><span class="dv">35</span>)</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#[E(g)$Mincost >= 0]</span>
<span class="co">#vertex.size=24</span></code></pre></div>
</div>
</div>
<div id="last-plan-max-flow-with-many-constraints" class="section level1">
<h1>4 - Last Plan Max Flow with many constraints</h1>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#Maximum Flow</span>
<span class="co"># Set up model</span>
max_flow <-<span class="st"> </span><span class="kw">make.lp</span>(<span class="dv">0</span>, <span class="dv">41</span>)
<span class="kw">lp.control</span>(max_flow, <span class="dt">sense =</span> <span class="st">"max"</span>)</code></pre></div>
<pre><code>## $anti.degen
## [1] "fixedvars" "stalling"
##
## $basis.crash
## [1] "none"
##
## $bb.depthlimit
## [1] -50
##
## $bb.floorfirst
## [1] "automatic"
##
## $bb.rule
## [1] "pseudononint" "greedy" "dynamic" "rcostfixing"
##
## $break.at.first
## [1] FALSE
##
## $break.at.value
## [1] 1e+30
##
## $epsilon
## epsb epsd epsel epsint epsperturb epspivot
## 1e-10 1e-09 1e-12 1e-07 1e-05 2e-07
##
## $improve
## [1] "dualfeas" "thetagap"
##
## $infinite
## [1] 1e+30
##
## $maxpivot
## [1] 250
##
## $mip.gap
## absolute relative
## 1e-11 1e-11
##
## $negrange
## [1] -1e+06
##
## $obj.in.basis
## [1] TRUE
##
## $pivoting
## [1] "devex" "adaptive"
##
## $presolve
## [1] "none"
##
## $scalelimit
## [1] 5
##
## $scaling
## [1] "geometric" "equilibrate" "integers"
##
## $sense
## [1] "maximize"
##
## $simplextype
## [1] "dual" "primal"
##
## $timeout
## [1] 0
##
## $verbose
## [1] "neutral"</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">## Set objective fn
obj_fn <-<span class="st"> </span><span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">1</span>)
<span class="kw">set.objfn</span>(max_flow, obj_fn)
<span class="co"># Set up constraints</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>( <span class="dv">1</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">1000000</span>)<span class="co">#inflow</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="op">-</span><span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">240</span>,<span class="dv">150</span>,<span class="dv">150</span>,<span class="dv">240</span>,<span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span> ) <span class="co">#NY</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="op">-</span><span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">240</span>,<span class="dv">150</span>,<span class="dv">150</span>,<span class="dv">240</span>,<span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#FL</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Lusaka</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>),<span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Libreville</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Nairobi</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">150</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Khartoum</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>),<span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Luanda</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">240</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Dakar</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>),<span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Niamey</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>),<span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="dv">150</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="op">-</span><span class="fl">17.7</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>),<span class="st">"="</span>, <span class="dv">0</span>) <span class="co">#Ndjamena</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>,<span class="op">-</span><span class="dv">1</span>), <span class="st">"<="</span>, <span class="dv">1000000</span>) <span class="co">#OUtflow</span>
<span class="co"># Air Constraints</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">300</span>) <span class="co">#NY-Lusak</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">500</span>) <span class="co">#NY-Nairobi</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">500</span>) <span class="co">#NY-Khartoum</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">500</span>) <span class="co">#FL-Lusaka</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">700</span>) <span class="co">#FL-Nairobi</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">600</span>) <span class="co">#FL-Khartoum</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">200</span>) <span class="co">#Lusaka-Niamey</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">0</span>) <span class="co">#Nairobi-Niamey</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">300</span>) <span class="co">#Khartoum-Niamey</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">140</span>) <span class="co">#Lusaka-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">40</span> ) <span class="co">#Nairobi-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">80</span> ) <span class="co">#Khartoum-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">0</span> ) <span class="co">#Lusaka-Ndjamena</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">300</span>) <span class="co">#Nairobi-Ndjamena</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">40</span> ) <span class="co">#Khartoum-Ndja</span>
<span class="co"># Truck Contraints</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">250</span>) <span class="co">#Lunda-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">240</span>) <span class="co">#Lunda-Ndjamena</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">300</span>) <span class="co">#Lib-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">160</span>) <span class="co">#Lib-Ndjamena</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">700</span>) <span class="co">#Dakar-Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">450</span>) <span class="co">#Dakar-Ndjamena</span>
<span class="co"># City REquirements Constraints</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">150000</span>) <span class="co">#Lusaka</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">100000</span>) <span class="co">#Liber</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">120000</span>) <span class="co">#Nairobi</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">90000</span>) <span class="co">#Khartoum</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">130000</span>) <span class="co">#Lunada</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">50000</span>) <span class="co">#Dakar</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">100000</span>) <span class="co">#Niamey</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>,<span class="dv">0</span>), <span class="st">"<="</span>, <span class="dv">180000</span>) <span class="co">#Kosongo</span>
<span class="kw">add.constraint</span>(max_flow, <span class="kw">c</span>(<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">0</span>,<span class="dv">1</span>), <span class="st">"<="</span>, <span class="dv">80000</span>) <span class="co">#Ndjamena</span>
<span class="kw">dimnames</span>(max_flow) <-<span class="st"> </span><span class="kw">list</span>(<span class="kw">c</span>(<span class="st">"Inflow"</span>,<span class="st">"New York"</span>, <span class="st">"Jacksonville"</span>,<span class="st">"Lusaka"</span>, <span class="st">"Libreville"</span>, <span class="st">"Nairobi"</span>,
<span class="st">"Khartoum"</span>, <span class="st">"Luanda"</span>, <span class="st">"Dakar"</span>, <span class="st">"Niamey"</span>, <span class="st">"Kosongo"</span>, <span class="st">"Ndjamena"</span>, <span class="st">"Max Outflow"</span>,
<span class="st">"Ny-Lusaka AirC"</span>, <span class="st">"NY-Nairobi AirC"</span>, <span class="st">"NY-Khartoum AirC"</span>,
<span class="st">"JAX-Lusaka AirC"</span>, <span class="st">"JAX-Nairobi AirC"</span>,<span class="st">"JAX-Khartoum AirC"</span>,
<span class="st">"Lusaka-Niamey AirC"</span>, <span class="st">"Nairobi-Niamey AirC"</span>, <span class="st">"Khartoum-Niamey AirC"</span>,
<span class="st">"Lusaka-Kosongo AirC"</span>,<span class="st">"Nairobi-Kosongo AirC"</span>, <span class="st">"Khartoum-Kosongo AirC"</span>,
<span class="st">"Lusaka-Ndjamena AirC"</span>, <span class="st">"Nairobi-Ndjamena AirC"</span>, <span class="st">"Khartoum-Ndjamena AirC"</span>,
<span class="st">"Luanda-Kosongo TruckC"</span>, <span class="st">"Luanda-Ndjamena TruckC"</span>, <span class="st">"Libreville-Kosongo TruckC"</span>,
<span class="st">"Libreville-Ndjamena TruckC"</span>, <span class="st">"Dakar-Kosongo TruckC"</span>, <span class="st">"Dakar-Ndjamena TruckC"</span>,
<span class="st">"LusakaR"</span>, <span class="st">"LibrevilleR"</span>, <span class="st">"NairobiR"</span>, <span class="st">"KhartoumR"</span>,
<span class="st">"LuandaR"</span>, <span class="st">"DakarR"</span>, <span class="st">"NiameyR"</span>, <span class="st">"KosongoR"</span>, <span class="st">"NdjamenaR"</span>),
<span class="kw">c</span>(<span class="st">"I-NY"</span>, <span class="st">"I-JAX"</span>, <span class="kw">as.vector</span>(edges<span class="op">$</span>ID), <span class="st">"Lusaka-O"</span>, <span class="st">"Libreville-O"</span>,
<span class="st">"Nairobi-O"</span>, <span class="st">"Khartoum-O"</span>, <span class="st">"Luanda-O"</span>,<span class="st">"Dakar-O"</span>, <span class="st">"Niamey-O"</span>,
<span class="st">"Kosongo-O"</span>, <span class="st">"Ndjamena-O"</span>) )
<span class="co"># Write to view the algebraic formulation</span>
<span class="kw">write.lp</span>(max_flow, <span class="st">"5260_S18_minterm_max_flow.lp"</span>,<span class="dt">type =</span> <span class="st">'lp'</span>)
<span class="co"># Solve the model</span>
<span class="kw">solve</span>(max_flow)</code></pre></div>
<pre><code>## [1] 0</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Make results and sensitivity table </span>
ps <-<span class="st"> </span><span class="kw">get.primal.solution</span>(max_flow)
obj_sa <-<span class="st"> </span><span class="kw">get.sensitivity.obj</span>(max_flow)
rhs_sa <-<span class="st"> </span><span class="kw">get.sensitivity.rhs</span>(max_flow)
nv <-<span class="st"> </span><span class="kw">length</span>(<span class="kw">get.variables</span>(max_flow))
mc <-<span class="st"> </span><span class="kw">length</span>(<span class="kw">get.constr.type</span>(max_flow))
ov <-<span class="st"> </span><span class="kw">paste0</span>(<span class="st">"Objective Value = "</span>, ps[<span class="dv">1</span>])
sa_tab <-<span class="st"> </span><span class="kw">rbind</span>(ps[<span class="dv">2</span><span class="op">:</span>(nv <span class="op">+</span><span class="st"> </span>mc <span class="op">+</span><span class="st"> </span><span class="dv">1</span>)],
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>duals[<span class="dv">1</span><span class="op">:</span>mc], obj_fn), <span class="dv">2</span>),
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>dualsfrom[<span class="dv">1</span><span class="op">:</span>mc],obj_sa<span class="op">$</span>objfrom), <span class="dv">2</span>),
<span class="kw">round</span>(<span class="kw">c</span>(rhs_sa<span class="op">$</span>dualstill[<span class="dv">1</span><span class="op">:</span>mc],obj_sa<span class="op">$</span>objtill), <span class="dv">2</span>))
<span class="kw">colnames</span>(sa_tab) <-<span class="st"> </span><span class="kw">c</span>(<span class="kw">rownames</span>(max_flow), <span class="kw">colnames</span>(max_flow))
<span class="kw">rownames</span>(sa_tab) <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"solution"</span>, <span class="st">"duals/coef"</span>, <span class="st">"Sens From"</span>, <span class="st">"Sens Till"</span>)
<span class="co"># Objective value and sensitivity analysis table Transposing for better quality </span>
m2<-<span class="st"> </span><span class="kw">as.data.frame</span>(sa_tab)
tm2 <-<span class="st"> </span><span class="kw">transpose</span>(m2)
<span class="kw">setnames</span>(tm2, <span class="kw">rownames</span>(m2))
<span class="kw">colnames</span>(tm2) <-<span class="st"> </span><span class="kw">rownames</span>(m2)
<span class="kw">rownames</span>(tm2) <-<span class="st"> </span><span class="kw">colnames</span>(m2)
ov</code></pre></div>
<pre><code>## [1] "Objective Value = 816170"</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r">tm3<-<span class="st"> </span><span class="kw">as.data.frame</span>(tm2)
tm3</code></pre></div>
<pre><code>## solution duals/coef
## Inflow 8.161700e+05 0.0
## New York 1.455192e-10 0.0
## Jacksonville 0.000000e+00 0.0
## Lusaka 0.000000e+00 1.0
## Libreville 0.000000e+00 0.0
## Nairobi 0.000000e+00 0.0
## Khartoum 0.000000e+00 0.0
## Luanda 0.000000e+00 0.0
## Dakar 0.000000e+00 0.0
## Niamey 0.000000e+00 0.0
## Kosongo 0.000000e+00 1.0
## Ndjamena 0.000000e+00 1.0
## Max Outflow -8.161700e+05 0.0
## Ny-Lusaka AirC 3.000000e+02 150.0
## NY-Nairobi AirC 5.000000e+02 0.0
## NY-Khartoum AirC 5.000000e+02 0.0
## JAX-Lusaka AirC 5.000000e+02 150.0
## JAX-Nairobi AirC 6.400000e+02 0.0
## JAX-Khartoum AirC 5.200000e+02 0.0
## Lusaka-Niamey AirC 0.000000e+00 0.0
## Nairobi-Niamey AirC 0.000000e+00 0.0
## Khartoum-Niamey AirC 3.000000e+02 0.0
## Lusaka-Kosongo AirC 0.000000e+00 0.0
## Nairobi-Kosongo AirC 4.000000e+01 150.0
## Khartoum-Kosongo AirC 8.000000e+01 150.0
## Lusaka-Ndjamena AirC 0.000000e+00 0.0
## Nairobi-Ndjamena AirC 3.000000e+02 150.0
## Khartoum-Ndjamena AirC 4.000000e+01 150.0
## Luanda-Kosongo TruckC 2.500000e+02 17.7
## Luanda-Ndjamena TruckC 2.400000e+02 17.7
## Libreville-Kosongo TruckC 3.000000e+02 17.7
## Libreville-Ndjamena TruckC 1.600000e+02 17.7
## Dakar-Kosongo TruckC 7.000000e+02 17.7
## Dakar-Ndjamena TruckC 4.500000e+02 17.7
## LusakaR 1.200000e+05 0.0
## LibrevilleR 1.000000e+05 1.0
## NairobiR 1.200000e+05 1.0
## KhartoumR 9.000000e+04 1.0
## LuandaR 1.300000e+05 1.0
## DakarR 5.000000e+04 1.0
## NiameyR 1.000000e+05 1.0
## KosongoR 4.012500e+04 0.0
## NdjamenaR 6.604500e+04 0.0
## I-NY 5.671700e+05 0.0
## I-JAX 2.490000e+05 0.0
## New York, NY > Lusaka, Zambia 3.000000e+02 0.0
## New York, NY > Libreville, Gabon 6.797583e+02 0.0
## New York, NY > Nairobi, Kenya 5.000000e+02 0.0
## New York, NY > Khartoum, Sudan 5.000000e+02 0.0
## New York, NY > Luanda, Angola 5.778042e+02 0.0
## New York, NY > Dakar, Senegal 2.931458e+02 0.0
## Jacksonville, FL > Lusaka, Zambia 5.000000e+02 0.0
## Jacksonville, FL > Libreville, Gabon 0.000000e+00 0.0
## Jacksonville, FL > Nairobi, Kenya 6.400000e+02 0.0
## Jacksonville, FL > Khartoum, Sudan 5.200000e+02 0.0
## Jacksonville, FL > Luanda, Angola 0.000000e+00 0.0
## Jacksonville, FL > Dakar, Senegal 0.000000e+00 0.0
## Lusaka, Zambia > Niamey, Niger 0.000000e+00 0.0
## Libreville, Gabon > Niamey, Niger 3.107345e+03 0.0
## Nairobi, Kenya > Niamey, Niger 0.000000e+00 0.0
## Khartoum, Sudan > Niamey, Niger 3.000000e+02 0.0
## Luanda, Angola > Niamey, Niger 0.000000e+00 0.0
## Dakar, Senegal > Niamey, Niger 0.000000e+00 0.0
## Lusaka, Zambia > Kosongo, D.R. Congo 0.000000e+00 0.0
## Libreville, Gabon > Kosongo, D.R. Congo 3.000000e+02 0.0
## Nairobi, Kenya > Kosongo, D.R. Congo 4.000000e+01 0.0
## Khartoum, Sudan > Kosongo, D.R. Congo 8.000000e+01 0.0
## Luanda, Angola > Kosongo, D.R. Congo 2.500000e+02 0.0
## Dakar, Senegal > Kosongo, D.R. Congo 7.000000e+02 0.0
## Lusaka, Zambia > Ndjamena, Chad 0.000000e+00 0.0
## Libreville, Gabon > Ndjamena, Chad 1.600000e+02 0.0
## Nairobi, Kenya > Ndjamena, Chad 3.000000e+02 0.0
## Khartoum, Sudan > Ndjamena, Chad 4.000000e+01 0.0
## Luanda, Angola > Ndjamena, Chad 2.400000e+02 0.0
## Dakar, Senegal > Ndjamena, Chad 4.500000e+02 0.0
## Lusaka-O 1.200000e+05 1.0
## Libreville-O 1.000000e+05 1.0
## Nairobi-O 1.200000e+05 1.0
## Khartoum-O 9.000000e+04 1.0
## Luanda-O 1.300000e+05 1.0
## Dakar-O 5.000000e+04 1.0
## Niamey-O 1.000000e+05 1.0
## Kosongo-O 4.012500e+04 1.0
## Ndjamena-O 6.604500e+04 1.0
## Sens From Sens Till
## Inflow -1.0000e+30 1.00000e+30
## New York -1.8383e+05 5.67170e+05
## Jacksonville -1.8383e+05 2.49000e+05
## Lusaka -1.2000e+05 3.00000e+04
## Libreville -1.8383e+05 1.63142e+05
## Nairobi -9.0000e+03 9.60000e+04
## Khartoum -1.2000e+04 7.80000e+04
## Luanda -1.8383e+05 1.38673e+05
## Dakar -1.8383e+05 7.03550e+04
## Niamey -1.8383e+05 5.50000e+04
## Kosongo -4.0125e+04 1.39875e+05
## Ndjamena -6.6045e+04 1.39550e+04
## Max Outflow -1.0000e+30 1.00000e+30
## Ny-Lusaka AirC 0.0000e+00 5.00000e+02
## NY-Nairobi AirC 4.4000e+02 1.14000e+03
## NY-Khartoum AirC 4.2000e+02 1.02000e+03
## JAX-Lusaka AirC 0.0000e+00 7.00000e+02
## JAX-Nairobi AirC -1.0000e+30 1.00000e+30
## JAX-Khartoum AirC -1.0000e+30 1.00000e+30
## Lusaka-Niamey AirC -1.0000e+30 1.00000e+30
## Nairobi-Niamey AirC 0.0000e+00 6.00000e+01
## Khartoum-Niamey AirC 0.0000e+00 3.80000e+02
## Lusaka-Kosongo AirC -1.0000e+30 1.00000e+30
## Nairobi-Kosongo AirC 0.0000e+00 1.00000e+02
## Khartoum-Kosongo AirC 0.0000e+00 1.60000e+02
## Lusaka-Ndjamena AirC -1.0000e+30 1.00000e+30
## Nairobi-Ndjamena AirC 0.0000e+00 3.60000e+02
## Khartoum-Ndjamena AirC 0.0000e+00 1.20000e+02
## Luanda-Kosongo TruckC 0.0000e+00 8.15254e+03
## Luanda-Ndjamena TruckC 0.0000e+00 1.02842e+03
## Libreville-Kosongo TruckC 0.0000e+00 8.20254e+03
## Libreville-Ndjamena TruckC 0.0000e+00 9.48420e+02
## Dakar-Kosongo TruckC 0.0000e+00 8.60254e+03
## Dakar-Ndjamena TruckC 0.0000e+00 1.23842e+03
## LusakaR -1.0000e+30 1.00000e+30
## LibrevilleR 0.0000e+00 2.83830e+05
## NairobiR 2.4000e+04 1.29000e+05
## KhartoumR 1.2000e+04 1.02000e+05
## LuandaR 0.0000e+00 3.13830e+05
## DakarR 0.0000e+00 2.33830e+05
## NiameyR 4.5000e+04 2.83830e+05
## KosongoR -1.0000e+30 1.00000e+30
## NdjamenaR -1.0000e+30 1.00000e+30
## I-NY 0.0000e+00 0.00000e+00
## I-JAX 0.0000e+00 0.00000e+00
## New York, NY > Lusaka, Zambia -1.5000e+02 1.00000e+30
## New York, NY > Libreville, Gabon 0.0000e+00 0.00000e+00
## New York, NY > Nairobi, Kenya 0.0000e+00 1.00000e+30
## New York, NY > Khartoum, Sudan 0.0000e+00 1.00000e+30
## New York, NY > Luanda, Angola 0.0000e+00 0.00000e+00
## New York, NY > Dakar, Senegal 0.0000e+00 0.00000e+00
## Jacksonville, FL > Lusaka, Zambia -1.5000e+02 1.00000e+30
## Jacksonville, FL > Libreville, Gabon -1.0000e+30 0.00000e+00
## Jacksonville, FL > Nairobi, Kenya 0.0000e+00 0.00000e+00
## Jacksonville, FL > Khartoum, Sudan 0.0000e+00 0.00000e+00
## Jacksonville, FL > Luanda, Angola -1.0000e+30 0.00000e+00
## Jacksonville, FL > Dakar, Senegal -1.0000e+30 0.00000e+00
## Lusaka, Zambia > Niamey, Niger -1.0000e+30 1.50000e+02
## Libreville, Gabon > Niamey, Niger 0.0000e+00 0.00000e+00
## Nairobi, Kenya > Niamey, Niger -1.0000e+30 1.00000e+30
## Khartoum, Sudan > Niamey, Niger 0.0000e+00 1.00000e+30
## Luanda, Angola > Niamey, Niger -1.0000e+30 0.00000e+00
## Dakar, Senegal > Niamey, Niger -1.0000e+30 0.00000e+00
## Lusaka, Zambia > Kosongo, D.R. Congo -1.0000e+30 0.00000e+00
## Libreville, Gabon > Kosongo, D.R. Congo -1.7700e+01 1.00000e+30
## Nairobi, Kenya > Kosongo, D.R. Congo -1.5000e+02 1.00000e+30
## Khartoum, Sudan > Kosongo, D.R. Congo -1.5000e+02 1.00000e+30
## Luanda, Angola > Kosongo, D.R. Congo -1.7700e+01 1.00000e+30
## Dakar, Senegal > Kosongo, D.R. Congo -1.7700e+01 1.00000e+30
## Lusaka, Zambia > Ndjamena, Chad -1.0000e+30 0.00000e+00
## Libreville, Gabon > Ndjamena, Chad -1.7700e+01 1.00000e+30
## Nairobi, Kenya > Ndjamena, Chad -1.5000e+02 1.00000e+30
## Khartoum, Sudan > Ndjamena, Chad -1.5000e+02 1.00000e+30
## Luanda, Angola > Ndjamena, Chad -1.7700e+01 1.00000e+30
## Dakar, Senegal > Ndjamena, Chad -1.7700e+01 1.00000e+30
## Lusaka-O 1.0000e+00 1.00000e+30
## Libreville-O 0.0000e+00 1.00000e+30
## Nairobi-O 0.0000e+00 1.00000e+30
## Khartoum-O 0.0000e+00 1.00000e+30
## Luanda-O 0.0000e+00 1.00000e+30
## Dakar-O 0.0000e+00 1.00000e+30
## Niamey-O 0.0000e+00 1.00000e+30
## Kosongo-O 0.0000e+00 1.00000e+00
## Ndjamena-O 0.0000e+00 1.00000e+00</code></pre>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#get.variables(max_flow)</span></code></pre></div>
<div id="graph-max-cost-solution" class="section level2">
<h2>Graph Max Cost Solution</h2>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co"># Include solution in edges dataframe</span>
edges<span class="op">$</span>Mflow <-<span class="st"> </span><span class="kw">get.variables</span>(max_flow)[<span class="dv">3</span><span class="op">:</span><span class="dv">32</span>]
edges<span class="op">$</span>TotalAid <-<span class="st"> </span>edges<span class="op">$</span>Mflow <span class="op">*</span><span class="st"> </span>edges<span class="op">$</span>Capacity
<span class="co">#create size for vertecies</span>
<span class="co">#V()$Mflow <- get.variables(max_flow)[31:41] #tried playing with size of vertecies but failed</span>
<span class="co">#nodes$Mflow[1] <- get.variables(max_flow)[1]</span>
<span class="co">#nodes$Mflow[2] <- get.variables(max_flow)[2]</span>
g1 <-<span class="st"> </span>edges <span class="op">%>%</span>
<span class="st"> </span><span class="co"># creating igraph: "from" and "to" fields in the first two colums</span>
<span class="st"> </span><span class="kw">select</span>(From, To, ID, Capacity, Cost, Type, Mflow, TotalAid) <span class="op">%>%</span>
<span class="st"> </span><span class="co"># Make into graph object</span>
<span class="st"> </span><span class="kw">graph_from_data_frame</span>()
<span class="co">#Add route and node attribute</span>
<span class="kw">V</span>(g1)<span class="op">$</span>route <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"From"</span>,<span class="st">"From"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>,<span class="st">"To"</span>)
<span class="kw">V</span>(g1)<span class="op">$</span>color <-<span class="st"> </span><span class="kw">c</span>(<span class="st">"gold"</span>,<span class="st">"green"</span>)[<span class="dv">1</span><span class="op">+</span>(<span class="kw">V</span>(net)<span class="op">$</span>route<span class="op">==</span><span class="st">"From"</span>)]
<span class="kw">V</span>(g1)<span class="op">$</span>Mflow <-<span class="st"> </span><span class="kw">get.variables</span>(max_flow)[<span class="dv">31</span><span class="op">:</span><span class="dv">41</span>] <span class="co">#tried playing with size of vertecies but failed</span>
<span class="kw">V</span>(g1)<span class="op">$</span>Mflow[<span class="dv">1</span>] <-<span class="st"> </span><span class="kw">get.variables</span>(max_flow)[<span class="dv">1</span>]
<span class="kw">V</span>(g1)<span class="op">$</span>Mflow[<span class="dv">2</span>] <-<span class="st"> </span><span class="kw">get.variables</span>(max_flow)[<span class="dv">2</span>]
<span class="co"># Get some colours in to visualise routes</span>
<span class="kw">E</span>(g1)<span class="op">$</span>color[<span class="kw">E</span>(g1)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Truck'</span>] <-<span class="st"> 'saddlebrown'</span>
<span class="kw">E</span>(g1)<span class="op">$</span>color[<span class="kw">E</span>(g1)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Airplane'</span>] <-<span class="st"> 'forestgreen'</span>
<span class="kw">E</span>(g1)<span class="op">$</span>color[<span class="kw">E</span>(g1)<span class="op">$</span>Type <span class="op">==</span><span class="st"> 'Ship'</span>] <-<span class="st"> 'royalblue'</span>
<span class="kw">E</span>(g1)<span class="op">$</span>color[<span class="kw">E</span>(g1)<span class="op">$</span>Mflow <span class="op">==</span><span class="st"> </span><span class="dv">0</span>] <-<span class="st"> 'white'</span>
g1<span class="op">$</span>layout <-<span class="st"> </span><span class="kw">matrix</span>(<span class="kw">c</span>(<span class="op">-</span><span class="dv">800</span>, <span class="op">-</span><span class="dv">800</span>,
<span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>, <span class="dv">0</span>,
<span class="dv">800</span>, <span class="dv">800</span>, <span class="dv">800</span>,
<span class="dv">225</span>, <span class="dv">125</span>,
<span class="dv">300</span>, <span class="dv">250</span>, <span class="dv">200</span>, <span class="dv">150</span>, <span class="dv">100</span>, <span class="dv">50</span>,
<span class="dv">250</span>, <span class="dv">175</span>, <span class="dv">100</span>), <span class="dt">nc =</span> <span class="dv">2</span>)
<span class="kw">plot</span>(g1, <span class="dt">edge.width =</span> <span class="dv">20</span><span class="op">*</span><span class="kw">E</span>(g1)<span class="op">$</span>TotalAid<span class="op">/</span><span class="kw">max</span>(<span class="kw">E</span>(g1)<span class="op">$</span>TotalAid) ,
<span class="dt">edge.arrow.size=</span>.<span class="dv">3</span>,
<span class="dt">edge.label =</span> <span class="kw">as.integer</span>(<span class="kw">E</span>(g1)<span class="op">$</span>TotalAid),
<span class="dt">vertex.size=</span> <span class="dv">50</span><span class="op">*</span><span class="kw">V</span>(g1)<span class="op">$</span>Mflow<span class="op">/</span><span class="kw">max</span>(<span class="kw">V</span>(g1)<span class="op">$</span>Mflow))</code></pre></div>
<p><img src="" /><!-- --></p>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#get.variables(max_flow)</span>
<span class="kw">E</span>(g1)<span class="op">$</span>TotalAid</code></pre></div>
<pre><code>## [1] 45000 163142 75000 75000 138673 70355 75000 0 96000 78000
## [11] 0 0 0 55000 0 45000 0 0 0 5310
## [21] 6000 12000 4425 12390 0 2832 45000 6000 4248 7965</code></pre>
</div>
</div>
<div id="last-plan-testing-max-flow-by-relaxing-some-constraints-to-congos" class="section level1">
<h1>4 - Last Plan Testing Max Flow by relaxing some constraints to congos</h1>
<div class="sourceCode"><pre class="sourceCode r"><code class="sourceCode r"><span class="co">#Maximum Flow</span>
<span class="co"># Set up model</span>
max_flow <-<span class="st"> </span><span class="kw">make.lp</span>(<span class="dv">0</span>, <span class="dv">41</span>)
<span class="kw">lp.control</span>(max_flow, <span class="dt">sense =</span> <span class="st">"max"</span>)</code></pre></div>
<pre><code>## $anti.degen
## [1] "fixedvars" "stalling"
##
## $basis.crash
## [1] "none"
##
## $bb.depthlimit
## [1] -50
##
## $bb.floorfirst
## [1] "automatic"
##
## $bb.rule
## [1] "pseudononint" "greedy" "dynamic" "rcostfixing"
##
## $break.at.first
## [1] FALSE
##
## $break.at.value
## [1] 1e+30
##
## $epsilon
## epsb epsd epsel epsint epsperturb epspivot
## 1e-10 1e-09 1e-12 1e-07 1e-05 2e-07
##
## $improve
## [1] "dualfeas" "thetagap"
##
## $infinite
## [1] 1e+30
##
## $maxpivot
## [1] 250
##
## $mip.gap
## absolute relative
## 1e-11 1e-11
##
## $negrange
## [1] -1e+06
##
## $obj.in.basis
## [1] TRUE
##
## $pivoting
## [1] "devex" "adaptive"
##
## $presolve
## [1] "none"
##
## $scalelimit
## [1] 5
##
## $scaling
## [1] "geometric" "equilibrate" "integers"
##
## $sense
## [1] "maximize"
##
## $simplextype
## [1] "dual" "primal"
##
## $timeout
## [1] 0