-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain.cpp
237 lines (200 loc) · 6.74 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#include <bits/stdc++.h>
using namespace std; // NOLINT
/**
* The most operations we will have to do is N - 1 which is stacking all the
* building together into one.
*/
constexpr int MAX_N = 5000;
constexpr int INF = numeric_limits<int>::max();
constexpr bool TUTORIAL = true;
/**
* The number of buildings.
*/
int N;
/**
* Stores height of each building.
*/
int H[MAX_N + 1];
/**
* This array means 2 different things for (1) my original solution and (2)
* the tutorial based solution.
*
* (1) Each DP[n][i] stores (i) the height of the last building after
* beautifying H[0...i] in <= n operations or (ii) -1 if it is not possible to
* do so.
*
* (2) Each DP[i][n] stores the height of the lowest last towers after
* beautifying buildings 0...i into at least n towers.
*/
int DP[MAX_N + 1][MAX_N + 1];
/**
* Original O(n^3) implementation - more complex than tutorial solution but
* passes in time limit.
*/
int solution() {
// Fill in DP[0][i] for all i. We are effectively checking if the city is
// already beautiful.
DP[0][0] = H[0];
for (int i = 1; i < N; i++) {
if (DP[0][i - 1] == -1) {
DP[0][i] = -1; // Beauty issue earlier in the city!
} else {
DP[0][i] = (H[i] >= H[i - 1]) ? H[i] : -1; // Non-decreasing height?
}
}
// Check if city is already beautiful.
if (DP[0][N - 1] != -1) {
return 0;
}
// Search for the smallest number of operations that can beautify thie city.
for (int n = 1; n < N; n++) {
DP[n][0] = H[0];
// Calculate DP[n][i] for all H[0...i] to building up DP[n][N - 1].
for (int i = 1; i < N; i++) {
DP[n][i] = INF;
// Check if we can beautify H[0...i] in < n ops.
if (DP[n - 1][i] != -1) {
DP[n][i] = min(DP[n][i], DP[n - 1][i]);
}
// Check if we can beautify H[0...i] in <= n ops by keeping H[i] separate
// at the very end.
if (DP[n][i - 1] != -1 && DP[n][i - 1] <= H[i]) {
DP[n][i] = min(DP[n][i], H[i]);
}
// Check if we can beautify H[0...i] in <= n ops by stacking H[i] on top
// of the building to it's left.
if (DP[n - 1][i - 1] != -1) {
DP[n][i] = min(DP[n][i], H[i] + DP[n - 1][i - 1]);
}
// We are currently on building i. We are trying to find a slice of the
// city H[j...i] such that S = sum(H[j...i]), S >= DP[m][j - 1], and S
// is MINIMAL - important! m is the number of moves left after stacking
// H[j...i] which takes i - j operations.
int S = H[i];
for (int m = n - 1; m >= 0; m--) {
int j = i - (n - m);
S += H[j];
//
// Check for (i) if there is no in bounds j with a slice H[j...i] of
// length n - m + 1 or (ii) if DP[m][j - 1] is invalid - no prefix
// exists for the slice.
//
// Why can we terminate our search here? Say DP[m][j] != -1 so there
// exists a valid set of <= m operations to beautify H[0...j]. Thus,
// DP[m + 1][j + 1] <= DP[m][j] because we can always just stack
// H[j + 1] on top of the last building in the beautification of
// H[0...j] in m operations.
//
// Thus DP[m][j - 1] == -1 -> D[m - 1][j] = -1 (next iteration) for
// the rest of the loop.
//
if (j < 0 || (j > 0 && DP[m][j - 1] == -1)) break;
// Check if stacking together H[j...i] does not create a decreasing
// height when appended to optimal (lowest height) beautification of
// H[0...j - 1].
if ((j == 0) || S >= DP[m][j - 1]) {
DP[n][i] = min(DP[n][i], S);
break;
}
}
// Mark DP[n][i] as impossible if still at infinity.
DP[n][i] = (DP[n][i] == INF) ? -1 : DP[n][i];
}
// Check if we can beautify all N buildsings in n ops.
if (DP[n][N - 1] != -1) {
return n;
}
}
return N - 1;
}
/**
* Tutorial based O(n^2) implementation - also simpler than my original
* solution.
*/
int tutorial() {
// Handle our base case - DP for just the first building.
DP[0][0] = DP[0][1] = H[0];
for (int n = 2; n <= N; n++) {
DP[0][n] = -1;
}
for (int j = 1; j < N; j++) {
// For case n = 1 we can try to just stack this building on top of the
// stack of all previous buildings.
DP[j][0] = DP[j][1] = DP[j - 1][1] + H[j];
// S = the smallest sum H[i] + ... + H[j] such that S >= DP[i - 1][n - 1]
// at each iteration. This is essentially the height of the smallest
// stack of buildings we can have as the last tower for each n. We need to
// be very careful that we compute this suffix sum at first and NOT
// H[0] + ... H[j]. It appears like the next stage can be modified to
// essentially trim H[0] + ... + H[j] from the left but this is messy
// since DP[k][n - 1] > H[k + 1] + ... H[j] does NOT rule out the existence
// of m > k such that DP[m][n - 1] <= H[m + 1] + ... + H[j]. We can avoid
// this messy case by just calculating this initial S from the right.
int i = j;
int S = H[j];
while (i > 0 && S < DP[i - 1][1]) {
i--;
S += H[i];
}
if (i == 0) {
// If we cannot beautify H[0] ... H[j] into at least 2 towers then we
// cannot beautify by stacking into 3, 4 ... N - 1 towers either.
for (int n = 2; n <= N; n++) {
DP[j][n] = -1;
}
} else {
// Use the fact that DP[i][n] <= DP[i][n - 1] if DP[i][n] != -1.
for (int n = 2; n <= N; n++) {
// Pull up i until we can beautify the previous H[0] ... H[i - 1] into
// at least n - 1 towers.
while (i < j && DP[i - 1][n - 1] == -1) {
S -= H[i];
i++;
}
if (DP[i - 1][n - 1] == -1 || S < DP[i - 1][n - 1]) {
DP[j][n] = -1;
} else {
// Decrease the tail S as much as possible while keeping it at least
// as tall as the last tower in the previous segment.
while (i < j && S - H[i] >= DP[i][n - 1]) {
S -= H[i];
i++;
}
// Sanity check...
assert(DP[i - 1][n - 1] != -1 && DP[i - 1][n - 1] <= S);
DP[j][n] = S;
}
}
}
// Finally calculcate DP[i][n] = min(DP[i][n + 1], DP[i][n + 2] ...)
for (int n = N - 1; n >= 0; n--) {
if (DP[j][n + 1] != -1) {
DP[j][n] = min(DP[j][n], DP[j][n + 1]);
}
}
}
// Search for the largest number of towers we can have, and thus the least
// number of ops, to get a beautified city.
for (int n = N; n > 0; n--) {
if (DP[N - 1][n] != -1) {
return N - n;
}
}
return N - 1;
}
int main() {
cin >> N;
if (N < 2) {
cout << 0 << endl;
return 0;
}
for (int i = 0; i < N; i++) {
cin >> H[i];
}
if (TUTORIAL) {
cout << tutorial() << endl;
} else {
cout << solution() << endl;
}
return 0;
}