-
Notifications
You must be signed in to change notification settings - Fork 44
/
Copy pathmain.cpp
159 lines (134 loc) · 4.13 KB
/
main.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#include <iostream>
#include <string>
#include <cassert>
using std::string;
using std::to_string;
using std::cout;
using std::endl;
class Solution {
public:
string nearestPalindromic(string x) {
int64_t y = stoll(x);
if (y < 0) {
return "0";
} else if (y == 0) {
return "1";
}
return to_string(nearest(y));
}
int64_t nearest(int64_t x) {
assert(x >= 0);
int64_t a = bigger(x + 1);
int64_t b = smaller(x - 1);
assert(a > x);
assert(b < x);
if (a - x < x - b) {
return a;
} else {
return b;
}
}
//
// Returns the closest palindromic number that is greater than or equal to x.
//
int64_t bigger(int64_t x) {
assert(x >= 0);
string s = to_string(x);
int n = s.size();
// Base case, we just take the lower digits and replace them with the
// reversed upper digits to create some sort of palindrome that may be <,
// =, or > the original x. This means that the left half of p and s,
// including the center for odd length cases, are always identical.
string p = s;
for (int i = 0; i < n / 2; i++) {
p[n - 1 - i] = p[i];
}
// Go through right half of the palindrome and make sure that p >= x.
for (int i = n / 2; i < n; i++) {
if (s[i] > p[i]) {
// Whoa! s[i] > p[i] so p < x. We will propagate from the center of p
// and try to increment each digit for the smallest change to p such
// that p >= x. Propagating from the center results in the smallest
// change because incrementing a lower place digit on the right of p
// requires an update to its reflection on the left, a higher place
// digit, to maintain p as a palindrome.
for (int j = (n - 1) / 2; j >= 0; j--) {
p[j]++;
if (p[j] > '9') {
// Carry a 1 over to the next higher place digit to the left just
// like in basic math.
p[j] = '0';
} else {
// No 1 to carry over! We know that s[0...j - 1] == p[0...j - 1]
// since the left half of s and p are initially identical. Thus
// after this increment s[0...j] < p[0...j] so s < p.
break;
}
}
// Update to ensure p is a palindrome.
for (int i = 0; i < n / 2; i++) {
p[n - 1 - i] = p[i];
}
return stoll(p);
} else if (s[i] < p[i]) {
// If s[i] < p[i] then p > x.
return stoll(p);
}
}
return stoll(p);
}
//
// Returns the closest palindromic number that is less than or equal to x.
// This is similar to the bigger(x) function with a minor edge case
// difference. (See comments)
//
int64_t smaller(int64_t x) {
assert(x >= 0);
if (x < 10) {
return x; // Handle single digit cases
}
string s = to_string(x);
int n = s.size();
string p = s;
for (int i = 0; i < n / 2; i++) {
p[n - 1 - i] = p[i];
}
for (int i = n / 2; i < n; i++) {
if (s[i] < p[i]) {
for (int j = (n - 1) / 2; j >= 0; j--) {
p[j]--;
if (p[j] < '0') {
p[j] = '9';
} else {
break;
}
}
// This is different from the bigger(x) function. We might run into a
// case like this. Say s = 1000 and p = 1001 initially so we end up
// with p = 0901 -> p = 0990 after mirroring. This isn't a valid number
// so we replace such cases with 999... (one less digit than x) because
// a 0 in the left most digit indicates we did not have enough to
// "borrow" when decrementing.
if (p[0] == '0') {
p = string(n - 1, '9');
return stoll(p);
}
for (int i = 0; i < n / 2; i++) {
p[n - 1 - i] = p[i];
}
return stoll(p);
} else if (s[i] > p[i]) {
return stoll(p);
}
}
return stoll(p);
}
};
//
// Delete before submitting to LeetCode.
//
int main() {
cout << "Please run this solution on LeetCode." << endl;
cout << "https://leetcode.com/contest/leetcode-weekly-contest-29/problems/find-the-closest-palindrome/" << endl; // NOLINT
return 0;
}