-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathrun_interpolate.py
290 lines (261 loc) · 12.1 KB
/
run_interpolate.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
# python3.7
"""Contains the code to interpolate text embedding using a pre-trained models.
"""
import os
import argparse
import numpy as np
from tqdm import tqdm
import torch
from models import build_model
from utils.image_utils import postprocess_image
from utils.visualizers import HtmlVisualizer
def run_text_head(G, context, eot_ind=None):
"""Run the text head"""
with torch.no_grad():
global_text, local_text = G.text_head(context, eot_ind=eot_ind)
return global_text, local_text
def run_mapping(G, z, global_text):
"""Run mapping network of the generator."""
with torch.no_grad():
mapping_results = G.mapping(z,
label=None,
context=global_text)
return mapping_results['wp']
def run_synthesize(G, wp, local_text):
"""Run synthesis network of the generator."""
with torch.no_grad():
res = G.synthesis(wp, context=local_text)
return res
def read_text(text_path):
"""Prepare snapshot text that will be used for evaluation."""
print(f'Loading text from {text_path}')
with open(text_path) as f:
text = [line.strip() for line in f.readlines()]
return text
def parse_float(arg):
"""Parse float number in string."""
if not arg:
return None
arg = arg.split(',')
arg = [float(i) for i in arg]
return arg
def to_numpy(data):
"""Converts the input data to `numpy.ndarray`."""
if isinstance(data, (int, float)):
return np.array(data)
if isinstance(data, np.ndarray):
return data
if isinstance(data, torch.Tensor):
return data.detach().cpu().numpy()
raise TypeError(f'Not supported data type `{type(data)}` for '
f'converting to `numpy.ndarray`!')
def linear_interpolate(src_code,
dst_code,
layer_index=None,
steps=7):
"""Interpolate between the latent code and boundary."""
assert (len(src_code.shape) == 3 and len(dst_code.shape) == 3 and
src_code.shape[0] == 1 and dst_code.shape[0] == 1 and
src_code.shape[1] == dst_code.shape[1])
if not layer_index:
layer_index = list(range(src_code.shape[1]))
linspace = np.linspace(0.0, 1.0, steps)
linspace = linspace.reshape([-1, 1, 1]).astype(np.float32)
inter_code = src_code + linspace * (dst_code - src_code)
is_inter = np.zeros(inter_code.shape, dtype=bool)
is_inter[:, layer_index, :] = True
inter_code = np.where(is_inter, inter_code, src_code)
return inter_code
def parse_args():
"""Parses arguments."""
parser = argparse.ArgumentParser()
parser.add_argument('weight_path', type=str, default='',
help='Path to the pre-trained models.')
parser.add_argument('--src_prompt', type=str, default='',
help='The src text prompt, support reading from a file '
'or just given a text prompt.')
parser.add_argument('--dst_prompt', type=str, default='',
help='The dst text prompt, support reading from a file '
'or just given a text prompt.')
parser.add_argument('--num_src', type=int, default=10,
help='Number of src images.')
parser.add_argument('--num_dst', type=int, default=10,
help='Number of dst images.')
parser.add_argument('--resolution', type=int, default=64,
help='Resolution of the model output.')
parser.add_argument('--results_dir', type=str, default='work_dirs/inter_res',
help='Results directory.')
parser.add_argument('--seed', type=int, default=4,
help='Random seed.')
parser.add_argument('--trunc_layers', type=int, default=None,
help='Number of layers to perform truncation.')
parser.add_argument('--trunc_val', type=float, default=0.2,
help='Default value for truncation.')
parser.add_argument('--loop_mapping', type=int, default=0,
help='Loop number for getting average for wp.')
parser.add_argument('--save_name', type=str, default='0',
help='Name to help save the file.')
parser.add_argument('--num_z', type=int, default=3,
help='Number of z for each text prompt.')
parser.add_argument('--inter_layers', type=str, default=None,
help='The layers will be interpolated')
parser.add_argument('--inter_step', type=int, default=9,
help='Number of interpolation steps. (default: 9)')
parser.add_argument('--inter_g', action='store_true',
help='Whether to interp global code.')
return parser.parse_args()
def main():
"""Main function."""
args = parse_args()
if torch.cuda.is_available():
device = torch.device('cuda')
else:
device = torch.device('cpu')
assert args.src_prompt
assert args.dst_prompt
if os.path.exists(args.src_prompt):
src_prompt = read_text(args.src_prompt)
else:
src_prompt = [args.src_prompt]
if os.path.exists(args.dst_prompt):
dst_prompt = read_text(args.dst_prompt)
else:
dst_prompt = [args.dst_prompt]
num_src = min(args.num_src, len(src_prompt))
num_dst = min(args.num_dst, len(dst_prompt))
clip_config = {'model_name':'ViT-L-14',
'pretrained':'openai',
'freeze_clip': True}
clip = build_model('CLIPModel', **clip_config)
g_config = {'resolution': args.resolution,
'image_channels': 3,
'init_res': 4,
'z_dim': 128,
'w_dim': 1024,
'mapping_fmaps': 1024,
'label_dim': 0,
'context_dim': 1024,
'clip_out_dim': 768,
'head_dim': 64,
'embedding_dim': 1024,
'use_text_cond': True,
'num_layers_text_enc': 4,
'use_w_cond': False,
'use_class_label': False,
'mapping_layers': 4,
'fmaps_base': 16384,
'fmaps_max': 1600,
'num_adaptive_kernels': {"4":1,"8":1,"16":2,"32":4,"64":8},
'num_block_per_res': {"4":3,"8":3,"16":3,"32":2,"64":2},
'attn_resolutions': ['8', '16', '32', '64'],
'attn_depth': {"8":2,"16":2,"32":2,"64":1},
'attn_ch_factor': 1,
'attn_gain': 0.3,
'residual_gain': 0.4,
'text_head_gain': 1.0,
'zero_out': True,
'fourier_feat': True,
'l2_attention': True,
'tie': False,
'scale_in': False,
'include_ff': True,
'use_checkpoint': False,
'checkpoint_res': ['8', '16', '32'],
'mask_self': False,
'conv_clamp': None,
'mtm': True,
'num_experts': {"8":4,"16":8,"32":16,"64":16},
'ms_training_res': ['4','8','16','32','64'],
'skip_connection': True}
G = build_model('Text2ImageGenerator', **g_config)
checkpoint = torch.load(args.weight_path, map_location='cpu')
if 'generator_smooth' in checkpoint:
print('Loading checkpoint from generator smooth!')
G.load_state_dict(checkpoint['generator_smooth'])
else:
print('Loading checkpoint from generator!')
G.load_state_dict(checkpoint['generator'])
G = G.eval().to(device)
trunc_layers = args.trunc_layers
if not trunc_layers:
trunc_layers = G.num_layers
w_avg = G.w_avg.reshape(1, -1, G.w_dim)[:, :trunc_layers]
num_rows = args.num_z * num_src * num_dst
visualizer_syn = HtmlVisualizer(image_size=args.resolution)
visualizer_syn.reset(num_rows=num_rows, num_cols=args.inter_step)
head = [f'Step: {i:02d}' for i in range(1, args.inter_step + 1)]
visualizer_syn.set_headers(head)
torch.manual_seed(args.seed)
os.makedirs(args.results_dir, exist_ok=True)
for z_idx in tqdm(range(args.num_z)):
latent_z = torch.randn((1, *G.latent_dim), device=device)
zs_avg = torch.randn((args.loop_mapping, *G.latent_dim), device=device)
for src_idx in range(num_src):
src_text = src_prompt[src_idx]
_, src_enc_text, src_eot_ind = clip.encode_text(text=src_text,
is_tokenize=True)
src_g_text, src_l_text = run_text_head(G,
src_enc_text,
eot_ind=src_eot_ind)
for dst_idx in range(num_dst):
dst_text = dst_prompt[dst_idx]
_, dst_enc_text, dst_eot_ind = clip.encode_text(text=dst_text,
is_tokenize=True)
dst_g_text, dst_l_text = run_text_head(G,
dst_enc_text,
eot_ind=dst_eot_ind)
inter_g_codes = linear_interpolate(
src_code=to_numpy(src_g_text)[:, np.newaxis],
dst_code=to_numpy(dst_g_text)[:, np.newaxis],
steps=args.inter_step)
inter_l_codes = linear_interpolate(
src_code=to_numpy(src_l_text),
dst_code=to_numpy(dst_l_text),
steps=args.inter_step)
inter_g_codes = torch.from_numpy(inter_g_codes).to(device)
inter_l_codes = torch.from_numpy(inter_l_codes).to(device)
row_ind = (z_idx * num_src + src_idx) * num_dst + dst_idx
for idx in range(inter_l_codes.shape[0]):
if args.loop_mapping > 0:
sum_wp = 0
for i in range(args.loop_mapping):
if args.inter_g:
tmp_res = run_mapping(G,
zs_avg[i:i+1],
inter_g_codes[idx:idx+1, 0])
else:
tmp_res = run_mapping(G,
zs_avg[i:i+1],
src_g_text)
sum_wp += tmp_res
avg_wp = sum_wp / args.loop_mapping
avg_wp = avg_wp[:, :trunc_layers]
if args.inter_g:
wp_i = run_mapping(G,
latent_z,
inter_g_codes[idx:idx+1, 0])
else:
wp_i = run_mapping(G, latent_z, src_g_text)
wp_i[:, :trunc_layers] = w_avg.lerp(wp_i[:, :trunc_layers], args.trunc_val)
if args.loop_mapping > 0:
wp_i[:, :trunc_layers] = avg_wp.lerp(wp_i[:, :trunc_layers], args.trunc_val)
img_inter = run_synthesize(G,
wp_i,
inter_l_codes[idx:idx+1])
img_inter = postprocess_image(to_numpy(img_inter['image']))
if idx == 0:
text = src_text
elif idx == args.inter_step - 1:
text = dst_text
else:
text = 'inter_res'
visualizer_syn.set_cell(row_ind,
idx,
text=text,
image=img_inter[0])
# Save result.
save_name_syn = f'inter_seed_{args.seed}_{args.save_name}.html'
save_path_syn = os.path.join(args.results_dir, save_name_syn)
visualizer_syn.save(save_path_syn)
if __name__ == '__main__':
main()