This repository was archived by the owner on Aug 3, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathMoleculeCalculation.py
633 lines (592 loc) · 33.2 KB
/
MoleculeCalculation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
import numpy as np
from sympy.physics.quantum.cg import CG
import math
import scipy.linalg
import copy
import MarksConstants as mc
import Miscellaneous as misc
g = 0
u = 1
# ##################
# Creating Bases
# ##################
boStates = [
{"L":1, "|Lambda|":0, "S":1, "I_BO":'g', "kappa_BO":1},
{"L":1, "|Lambda|":0, "S":1, "I_BO":'u', "kappa_BO":1},
{"L":1, "|Lambda|":0, "S":0, "I_BO":'g', "kappa_BO":1},
{"L":1, "|Lambda|":0, "S":0, "I_BO":'u', "kappa_BO":1},
{"L":1, "|Lambda|":1, "S":1, "I_BO":'g' },
{"L":1, "|Lambda|":1, "S":1, "I_BO":'u' },
{"L":1, "|Lambda|":1, "S":0, "I_BO":'g' },
{"L":1, "|Lambda|":1, "S":0, "I_BO":'u' },
]
def addFsRelevantStates(boBasis):
# Adds the states that are split by the Fs symmetry to the bare BO Basis.
expandedBasis = []
for state in boBasis:
for Sigma in np.arange(-state['S'], state['S']+1,1):
Omega = Sigma+state['|Lambda|']
if state['|Lambda|'] != 0 and Omega==0:
# Pi state and Omega == 0 so Sigma = 1 and two ways of symmetrizing.
for kappa_FS in [-1,1]:
newState = copy.copy(state)
newState.update({"|Sigma|":abs(Sigma), 'kappa_FS':kappa_FS, '|Omega|':abs(Omega)})
expandedBasis.append(newState)
elif Sigma>=0:
kappa_FS=(-1)**(1-state['|Lambda|']+state['S']-Sigma)
newState = copy.copy(state)
newState.update({"|Sigma|":abs(Sigma), 'kappa_FS':kappa_FS, '|Omega|':abs(Omega)})
if newState not in expandedBasis:
expandedBasis.append(newState)
return expandedBasis
def addHfsRelevantStates(boFsBasis, i_val=3/2):
# Adds the states that are split by the Fs symmetry to the bare BO Basis.
expandedBasis = []
i_a = i_b = i_val
IVals = np.arange(abs(i_a-i_b),i_a+i_b+1,1)
for state in boFsBasis:
for I_ in IVals:
for Iota in np.arange(-I_, I_+1,1):
#for Omega in [-state['|Omega|'], state['|Omega|']]:
for Omega in [-state['|Omega|'], state['|Omega|']]:
Phi = Iota+Omega
mostUpdates = {"|Phi|":abs(Phi),'I':I_, '|Iota|':abs(Iota), 'i_a':i_a, 'i_b':i_b}
if Omega != 0 and Phi == 0:
# there are two ways of combining Omega and Iota to get Phi=0 then
# and we will similarly get the symmetric and anti-symmetric superpositions.
for kappa_HFS in [-1,1]:
newState = copy.copy(state)
newState.update(mostUpdates)
newState.update({'kappa_HFS': kappa_HFS})
if newState not in expandedBasis:
expandedBasis.append(newState)
else:
newState = copy.copy(state)
newState.update(mostUpdates)
# probably want to think a moment on why using kappa_BO here
newState.update({ 'kappa_HFS':state['kappa_FS']*(-1)**(I_-Iota) })
if newState not in expandedBasis:
expandedBasis.append(newState)
return expandedBasis
def createAtomicBases(lvals, svals, ivals):
"""
Important notational note here. This function creates a *single atom* basis.
As such it is agnostic as to what nuclear center the basis is for, and so I
use an "x" subscript, which will be later changed to a/b when I construct the multi-particle basis.
Instead I continue to rely on that the notation of lower case letters is for a single particle quantum number
and the upper case refer to joint quantum numbers (i.e. L = l_a + l_b). This _x business is just a mechanism
to construct the multiparticle basis.
"""
lsiBasisRef, jiBasisRef, fBasisRef = [], [], []
for l_ in lvals:
for s_ in svals:
jvals = set(np.arange(abs(s_ - l_), s_ + l_+1, 1))
for j_ in jvals:
for i_ in ivals:
fVals = set(np.arange(abs(j_ - i_), j_ + i_+1, 1))
for f_ in fVals:
for m_f in np.arange(-f_,f_+1,1):
fBasisRef.append(multiplyableDict({"f_x":f_, "m_f_x": m_f, "j_x":j_, "l_x":l_, "s_x":s_, "i_x":i_}))
for m_j in np.arange(-j_,j_+1,1):
for i_ in ivals:
for m_i in np.arange(-i_,i_+1,1):
jiBasisRef.append(multiplyableDict({"j_x":j_, "m_j_x":m_j, "l_x":l_, "s_x":s_, "i_x":i_, "m_i_x":m_i}))
for m_l in np.arange(-l_,l_+1,1):
for s_ in svals:
for m_s in np.arange(-s_, s_+1,1):
for i_ in ivals:
for m_i in np.arange(-i_,i_+1,1):
lsiBasisRef.append(multiplyableDict({"l_x":l_, "m_l_x":m_l, "s_x":s_, "m_s_x":m_s, "i_x":i_, "m_i_x":m_i}))
return (lsiBasisRef, jiBasisRef, fBasisRef,
np.kron(lsiBasisRef,lsiBasisRef), np.kron(jiBasisRef,jiBasisRef), np.kron(fBasisRef,fBasisRef))
def createCaseABasis_MostlySym(Lvals, Svals, ivals, I_BOvals=["g","u"], Jv=None, Fv=None):
# Jv and Fv are only used for rotational calculations.
# does not include the planar reflection symmetry kappa_HFS.
boBasisRef = []
for I_BO in I_BOvals:
for L_ in Lvals:
for Lambda in np.arange(-L_,L_+1,1):
for S_ in Svals:
for Sigma in np.arange(-S_, S_+1,1):
for i_a in ivals:
for i_b in ivals:
for I_ in np.arange(abs(i_b-i_a), i_b+i_a+1,1):
for Iota in np.arange(-I_,I_+1,1):
state = multiplyableDict({"L":L_, "Lambda": Lambda,
"I_BO": I_BO, "S":S_, "Sigma":Sigma,
"I":I_, "Iota":Iota, "i_a":i_a, "i_b":i_b,
"Omega":Sigma+Lambda, "Phi": Sigma+Lambda+Iota })
if Jv is not None:
state.update({'J':Jv})
if Fv is not None:
state.update({'F':Fv})
if state not in boBasisRef:
boBasisRef.append(state)
boBasisRef = list(sorted(boBasisRef, key=lambda state: 1e5 * abs(state["Phi"])
+ 1e2 * abs(state['Omega']) + 1 * abs(state['Sigma'])))
return boBasisRef
def createCaseABasis_Sym(Lvals, Svals, ivals, I_BOvals=["g","u"], Jv=None, Fv=None):
boBasisRef = []
for I_BO in I_BOvals:
for L_ in Lvals:
for Lambda in np.arange(-L_,L_+1,1):
for S_ in Svals:
for Sigma in np.arange(-S_, S_+1,1):
for i_a in ivals:
for i_b in ivals:
for I_ in np.arange(abs(i_b-i_a), i_b+i_a+1,1):
for Iota in np.arange(-I_,I_+1,1):
Omega = Sigma+Lambda
Phi = Sigma+Lambda+Iota
if Lambda != 0 and Omega==0:
for kappa_BO in [-1,1]:
state = multiplyableDict({"L":L_, "|Lambda|": abs(Lambda),
"I_BO": I_BO, "S":S_, "|Sigma|":abs(Sigma),
"I":I_, "|Iota|":abs(Iota), "i_a":i_a, "i_b":i_b,
"|Omega|":abs(Omega), "Phi":Phi ,
"kappa_BO": kappa_BO, 'kappa_HFS':kappa_BO*(-1)**(I_-Iota)})
if Jv is not None:
state.update({'J':Jv})
if Fv is not None:
state.update({'F':Fv})
if state not in boBasisRef:
boBasisRef.append(state)
elif Omega != 0 and Phi == 0:
for kappa_HFS in [-1,1]:
state = multiplyableDict({"L":L_, "|Lambda|": abs(Lambda),
"I_BO": I_BO, "S":S_, "|Sigma|":abs(Sigma),
"I":I_, "|Iota|":abs(Iota), "i_a":i_a, "i_b":i_b,
"|Omega|":abs(Omega), "Phi":Phi ,
"kappa_BO": (-1)**(L_-Lambda+S_-Sigma), 'kappa_HFS':kappa_HFS})
if Jv is not None:
state.update({'J':Jv})
if Fv is not None:
state.update({'F':Fv})
if state not in boBasisRef:
boBasisRef.append(state)
else:
state = multiplyableDict({"L":L_, "|Lambda|": abs(Lambda),
"I_BO": I_BO, "S":S_, "|Sigma|":abs(Sigma),
"I":I_, "|Iota|":abs(Iota), "i_a":i_a, "i_b":i_b,
"|Omega|":abs(Omega), "Phi": Phi,
"kappa_BO": (-1)**(L_-Lambda+S_-Sigma),
"kappa_HFS":(-1)**(L_-Lambda+S_-Sigma+I_-Iota) })
if Jv is not None:
state.update({'J':Jv})
if Fv is not None:
state.update({'F':Fv})
if state not in boBasisRef:
boBasisRef.append(state)
boBasisRef = list(sorted(boBasisRef, key=lambda state: abs(state["|Omega|"])))
return boBasisRef
# ######################################
# Basis Conversion Functions
# ######################################
def convertH_toCaseABasis(states, H_, offset=-1/2):
# this seems misnamed...
num = len(states)
coupleM = np.array([[0.0 for _ in states] for _ in states])
for num, _ in enumerate(states):
coupleM[num,num] = offset
# This seems like a very round-about way of doing this.
# states on the input is the conversino of a case-a state to the given H_'s base. So it's
# |fs><a|
for num1, state1 in enumerate(states):
#misc.reportProgress(num1, len(states))
for num2, state2 in enumerate(states):
matElem = state2.T@H_@state1
coupleM[num1,num2] += matElem
return coupleM
def caseASymHfsToMostlySym(state, mostlySymBasis, indexes=False):
# this is one of my weird transformations that I want to revise to be a normal matrix.
if state['|Omega|'] == 0 and state['|Iota|'] == 0:
return caseASymFsToMostlySym(state, mostlySymBasis, indexes=indexes)
else:
stateMostlySym1, stateMostlySym2 = {},{}
for key in state.keys():
if key in ["kappa_BO", "kappa_FS", "kappa_HFS", "|Lambda|", "|Sigma|", "|Omega|"]:
pass
elif key[0] != "|":
stateMostlySym1[key] = state[key]
stateMostlySym2[key] = state[key]
elif key == "|Phi|":
stateMostlySym1["Phi"] = state["|Phi|"]
elif key == "|Iota|":
if (state['|Iota|'] + state['|Omega|'] == state["|Phi|"]) or (state['|Iota|'] - state['|Omega|'] == state["|Phi|"]):
IotaSign = 1
else:
IotaSign = -1
stateMostlySym1["Iota"] = IotaSign*state["|Iota|"]
stateMostlySym1['Omega'] = stateMostlySym1['Phi'] - stateMostlySym1['Iota']
stateMostlySym1['Lambda'] = (1 if stateMostlySym1['Omega']>0 else -1)*state['|Lambda|']
stateMostlySym1['Sigma'] = stateMostlySym1['Omega'] - stateMostlySym1['Lambda']
for key in ['Phi','Iota','Omega','Lambda','Sigma']:
stateMostlySym2[key] = -stateMostlySym1[key]
# Im confused about why this seems to need to involve kappa_FS to work.
sign = '+' if state['kappa_HFS']*state['kappa_FS']*(-1)**(state['I']-state['|Iota|'])==1 else '-'
#sign = '+' if state['kappa_HFS']*(-1)**(state['I']-state['|Iota|'])==1 else '-'
#sign = '+' if state['kappa_HFS'] == 1 else '-'
if indexes:
return [mostlySymBasis.index(stateMostlySym1), mostlySymBasis.index(stateMostlySym2)], [1,1 if sign == "+" else -1]
return '|'+''.join([str(val) for key, val in stateMostlySym1.items()])+'>'+sign+'|'+''.join([str(val) for key, val in stateMostlySym2.items()])+'>'
def caseASymFsToMostlySym(state, mostlySymBasis, indexes=False):
# this is one of my weird transformations that I want to revise to be a normal matrix.
# I think this is the last one for the fine structure... gah of course the most tricky too.
if state['|Lambda|'] == 0 and state['|Sigma|'] == 0:
stateMostlySym = {}
for key in state.keys():
if key in ["kappa_BO", "kappa_FS", "kappa_HFS"]:
pass
elif key == '|Iota|':
stateMostlySym['Iota'] = state['|Phi|']
elif key[0] != "|":
stateMostlySym[key] = state[key]
else:
stateMostlySym[key[1:-1]] = 0
if indexes:
return [mostlySymBasis.index(stateMostlySym)], [1]
return '|'+''.join([str(val) for key, val in stateMostlySym.items()])+'>'
else:
# else two state contribute
stateMostlySym2, stateMostlySym1 = {}, {}
for key in state.keys():
if key in ["kappa_BO", "kappa_FS", "kappa_HFS"]:
pass
elif key[0] != "|":
stateMostlySym1[key] = state[key]
stateMostlySym2[key] = state[key]
elif key == "|Lambda|":
stateMostlySym1[key[1:-1]] = state[key]
stateMostlySym2[key[1:-1]] = -state[key]
elif key == "|Sigma|":
stateMostlySym1[key[1:-1]] = state["|Omega|"] - stateMostlySym1['Lambda']
stateMostlySym2[key[1:-1]] = -state["|Omega|"] - stateMostlySym2['Lambda']
elif key == "|Omega|":
stateMostlySym1["Omega"] = state["|Omega|"]
stateMostlySym2["Omega"] = -state["|Omega|"]
elif key == "|Phi|":
stateMostlySym1["Phi"] = state["|Phi|"]
stateMostlySym2["Phi"] = -state["|Phi|"]
elif key == "|Iota|":
stateMostlySym1["Iota"] = state["|Phi|"]-state["|Omega|"]
stateMostlySym2["Iota"] = state["|Phi|"]-(-state["|Omega|"])
sign = '+' if state['kappa_FS'] == 1 else '-'
#sign = '+' if state['kappa_BO'] == 1 else '-'
if indexes:
return [mostlySymBasis.index(stateMostlySym1), mostlySymBasis.index(stateMostlySym2)], [1,1 if sign == "+" else -1]
return '|'+''.join([str(val) for key, val in stateMostlySym1.items()])+'>'+sign+'|'+''.join([str(val) for key, val in stateMostlySym2.items()])+'>'
def create_lsiToJi_Op(lsiBasis, jiBasis):
"""
creates | j m_j i m_i > < l m_l s m_s i m_i | transformation matrix.
The matrix elements are just clebsch Gordon coefficeints, but you have
to be careful to track quantum numbers carefully.
expects lsiBasis and jiBasis to be single atom bases.
"""
assert(len(lsiBasis)==len(jiBasis))
op = np.zeros((len(lsiBasis),len(jiBasis)))
for lsnum, lsiState in enumerate(lsiBasis):
for jnum, jiState in enumerate(jiBasis):
# there should be some repeats because of the i values in each basis
l, m_l, s, m_s, i_lsi, m_i_lsi = [lsiState[key] for key in ['l_x','m_l_x','s_x','m_s_x', 'i_x', 'm_i_x']]
j, m_j, jl, js, i_ji, m_i_ji = [jiState[key] for key in ['j_x', 'm_j_x', 'l_x', 's_x', 'i_x', 'm_i_x']]
# a good example of where you really need to keep track of all the quantum numbers.
# needing to handle this case makes me feel like the actual clebsh gordon coef should be written as
# <L,mL,S,mS|J,mJ,l_b,s_b> or so instead of <L,mL,S,mS|J,mJ> as it usually is written.
if jl != l or js != s or i_lsi != i_ji or m_i_lsi != m_i_ji:
op[jnum,lsnum] = 0
else:
op[jnum,lsnum] += float(CG(l, m_l, s, m_s, j, m_j).doit())
return op
def create_lsi2ToJi2_Op(lsiBasis, jiBasis):
"""
creates | j_a m_j_a i_a m_i_a >| j_b m_j_b i_b m_i_b > < l_a m_l_a s_a m_s_a i_a m_i_a |< l_b m_l_b s_b m_s_b i_b m_i_b |
transformation matrix. The matrix elements are just clebsch Gordon coefficeints, but you have
to be careful to track quantum numbers carefully.
expects lsiBasis and jiBasis to be *two* atom bases.
"""
assert(len(lsiBasis)==len(jiBasis))
op = np.zeros((len(lsiBasis),len(jiBasis)))
for lsnum, lsiState in enumerate(lsiBasis):
for jnum, jiState in enumerate(jiBasis):
op[jnum,lsnum] = 1
for suffix in ['_a','_b']:
# there should be some repeats because of the i values in each basis
l, m_l, s, m_s, i_lsi, m_i_lsi = [lsiState[key+suffix] for key in ['l','m_l','s','m_s', 'i', 'm_i']]
j, m_j, jl, js, i_ji, m_i_ji = [jiState[key+suffix] for key in ['j', 'm_j', 'l', 's', 'i', 'm_i']]
# a good example of where you really need to keep track of all the quantum numbers.
# needing to handle this case makes me feel like the actual clebsh gordon coef should be written as
# <L,mL,S,mS|J,mJ,l_b,s_b> or so instead of <L,mL,S,mS|J,mJ> as it usually is written.
if jl != l or js != s or i_lsi != i_ji or m_i_lsi != m_i_ji:
op[jnum,lsnum] *= 0
else:
op[jnum,lsnum] *= float(CG(l, m_l, s, m_s, j, m_j).doit())
return op
def create_jiToF_Op(jiBasis, fBasis):
"""
creates the matrix |f m_f j i><j m_j i m_i| transformation matrix for the given bases.
expects single atom bases
"""
assert(len(jiBasis)==len(fBasis))
jiToF = np.zeros((len(jiBasis),len(fBasis)))
for jnum, jiState in enumerate(jiBasis):
for fnum, fState in enumerate(fBasis):
j, m_j, l, s, i, m_i = [jiState[key] for key in ['j_x','m_j_x', 'l_x', 's_x', 'i_x', 'm_i_x']]
f, m_f, fj, fi, fl, fs = [fState[key] for key in ['f_x','m_f_x','j_x','i_x', 'l_x', 's_x']]
# needing to handle this case makes me feel like the actual clebsh gordon coef
# should technically be written as <L,mL,S,mS|J,mJ,l_b,s_b> or so instead
# of <L,mL,S,mS|J,mJ> as it usually is written.
if fj != j or fi != i or fl != l or fs != s:
jiToF[fnum, jnum] = 0
else:
res = float(CG(j, m_j, i, m_i, f, m_f).doit())
jiToF[fnum, jnum] += float(CG(j, m_j, i, m_i, f, m_f).doit())
return jiToF
def genCaseAToLsiTransform(caseABasis, lsiBasis,caseAMostlySymHfs, basisChange=None):
caseAToLsi = np.zeros((len(caseABasis),len(lsiBasis)**2))
for staten, state in enumerate(caseABasis):
misc.reportProgress(staten, len(caseABasis))
indexes, signs = caseASymHfsToMostlySym(state, caseAMostlySymHfs, indexes=True)
symFsState = 0
# construct the correct superposition which will preserve the symmetry of the given base.
# This should be only either 1 or 2 iterations in this loop.
print(indexes, signs)
if state['|Omega|'] != 0:
indexes = [indexes[0]]
signs = [signs[0]]
for index, sign in zip(indexes,signs):
caseAState = caseAMostlySymHfs[index] # alias
I_BO = g if caseAState["I_BO"] == "g" else u
#nuclearNums = [caseAState['I'], caseAState['Iota'],caseAState['i_a'],caseAState['i_b']]
oalNums = (caseAState["L"], caseAState["Lambda"], 1, 0) # oal = "orbital angular momentum"
spinNums = (caseAState["S"], caseAState["Sigma"], 1/2, 1/2)
symFsState += sign * caseAToAtomic( oalNums, spinNums, (0,0,0,0), I_BO, lsiBasis, basisChange=basisChange )
caseAToLsi[staten, :] = symFsState[:,0] / np.sqrt(len(indexes));
return caseAToLsi
def caseAMostlySymToLsi_2Transf( caseABasis, lsiBasis2, verbose=False):
"""
A hopefully more sensible way to calculate this. Should be able to make a matrix and then
"""
print('starting caseAMostlySymToLsi_2Transf')
transformation = np.zeros((len(caseABasis), len(lsiBasis2)))
for stateA_n, stateA in enumerate(caseABasis):
L_, Lambda = [stateA[kv] for kv in ['L','Lambda']]
l_a_sa, l_b_sa = (1,0)
S_, Sigma = [stateA[kv] for kv in ['S','Sigma']]
s_a_sa, s_b_sa = (1/2,1/2)
I_, Iota, i_a_sa, i_b_sa = [stateA[kv] for kv in ['I','Iota','i_a','i_b']]
I_BO = 1 if stateA['I_BO']=='g' else -1
p_ = (-1)**(S_)*I_BO
if verbose:
print('pval',p_)
for stateLsi_n, stateLsi in enumerate(lsiBasis2):
(l_a, lambda_a, l_b, lambda_b) = [stateLsi[kv] for kv in ['l_a', 'm_l_a', 'l_b', 'm_l_b']]
(s_a, sigma_a, s_b, sigma_b) = [stateLsi[kv] for kv in ['s_a', 'm_s_a', 's_b', 'm_s_b']]
(i_a, iota_a, i_b, iota_b) = [stateLsi[kv] for kv in ['i_a', 'm_i_a', 'i_b', 'm_i_b']]
if (S_ not in np.arange(abs(s_a-s_b), s_a+s_b+1,1)
or I_ not in np.arange(abs(i_a-i_b), i_a+i_b+1,1)
or Lambda != lambda_a+lambda_b
or Sigma != sigma_a + sigma_b
or Iota != iota_a + iota_b
or l_a == l_b):
#print('continuing...')
continue
d1 = 1 if s_a_sa == s_a else 0
d2 = 1 if s_b_sa == s_b else 0
d3 = 1 if i_a_sa == i_a else 0
d4 = 1 if i_b_sa == i_b else 0
deltas = d1*d2*d3*d4
oalCoef = float(CG(l_a,lambda_a,l_b,lambda_b,L_,Lambda).doit())
spinCoef = float(CG(s_a,sigma_a,s_b,sigma_b,S_,Sigma).doit())
nuclearCoef = float(CG(i_a,iota_a,i_b,iota_b,I_,Iota).doit())
transformation[stateA_n, stateLsi_n] = p_**(l_a)*deltas*oalCoef*spinCoef*nuclearCoef
if np.linalg.norm(transformation[stateA_n,:]) == 0:
raise ValueError("State has zero norm!",stateA,stateA_n)
transformation[stateA_n,:] /= np.linalg.norm(transformation[stateA_n,:])
return transformation
def genCaseAToLsiTransform2(caseABasis, lsiBasis, caseAMostlySymHfs, basisChange=None):
print('starting genCaseAToLsiTransform2')
caseAToLsi = np.zeros((len(caseABasis),len(lsiBasis)))
transf = caseAMostlySymToLsi_2Transf( caseAMostlySymHfs, lsiBasis, verbose=False)
for staten, state in enumerate(caseABasis):
misc.reportProgress(staten, len(caseABasis))
indexes, signs = caseASymHfsToMostlySym(state, caseAMostlySymHfs, indexes=True)
symFsState = 0
# construct the correct superposition which will preserve the symmetry of the given base.
# This should be only either 1 or 2 iterations in this loop.
print(indexes, signs)
if state['|Omega|'] != 0:
indexes = [indexes[0]]
signs = [signs[0]]
for index, sign in zip(indexes,signs):
caseAState = caseAMostlySymHfs[index]
caseAc = getColumnState(caseAMostlySymHfs, caseAState)
print(transf.shape, np.array(caseAc).shape)
symFsState += sign * transf.T @ caseAc
caseAToLsi[staten, :] = symFsState[:,0] / np.sqrt(len(indexes));
return caseAToLsi
def caseAToLsi_2Transf( caseABasis, lsiBasis2 ):
"""
A hopefully more sensible way to calculate this. Should be able to make a matrix and then
"""
(L, Lambda, la, lb) = oalNums
(S, Sigma, sa, sb) = spinNums
(I, Iota, ia, ib) = nuclearNums
p_ = (-1)**(S+I_BO)
transformation = np.zeros((len(caseABasis, lsiBasis2)))
for stateA_n, stateA in enumerate(caseABasis):
for stateLsi_n, stateLsi in enumerate(lsiBasis2):
(l_a, lambda_a, l_b, lambda_b) = [stateLsi[kv] for kv in ['l_a', 'm_l_a', 'l_b', 'm_l_b']]
(s_a, sigma_a, s_b, sigma_b) = [stateLsi[kv] for kv in ['s_a', 'm_s_a', 's_b', 'm_s_b']]
(i_a, iota_a, i_b, iota_b) = [stateLsi[kv] for kv in ['i_a', 'm_i_a', 'i_b', 'm_i_b']]
oalCoef = float(CG(l_a,lambda_a,l_b,lambda_b,L,Lambda).doit())
spinCoef = float(CG(s_a,sigma_a,s_b,sigma_b,S,Sigma).doit())
nuclearCoef = float(CG(i_a,iota_a,i_b,iota_b,I,Iota).doit())
transformation[stateA_n, stateLsi_n] = p_**(l_b)*oalCoef*spinCoef*nuclearCoef
return transformation
def caseAToAtomic( oalNums, spinNums, nuclearNums, I_BO, lsiBasis, basisChange=None ):
"""
This takes a single case A *state* and transforms it to the LSI basis an returns it. a rather round-about way to do this.
(L, Lambda, la, lb) = oalNums
(S, Sigma, sa, sb) = spinNums
(I, Iota, ia, ib) = nuclearNums
first converts to lsi basis then to whatever basis determined by basischange.
this is the place to focus next.
"""
state = 0
(L, Lambda, la, lb) = oalNums
(S, Sigma, sa, sb) = spinNums
(I, Iota, ia, ib) = nuclearNums
p_ = (-1)**(S+I_BO)
for mla in np.arange(-la,la+1,1):
mlb = Lambda-mla
if abs(mlb) > lb:
continue
for msa in np.arange(-sa,sa+1,1):
msb = Sigma-msa
if abs(msb) > sb:
continue
for mia in np.arange(-ia, ia+1, 1):
mib = Iota-mia
if abs(mib) > ib:
continue
# for mib in np.arange(-ib,ib+1,1):
# CG notation is <j_a,mj_a,j_b,mj_b|j3,mj3>
oalCoef = float(CG(la,mla,lb,mlb,L,Lambda).doit())
spinCoef = float(CG(sa,msa,sb,msb,S,Sigma).doit())
nuclearCoef = float(CG(ia,mia,ib,mib,I,Iota).doit())
# I need to remember how this is organized...
state1_a = getColumnState(lsiBasis, {'l_x':la,'m_l_x':mla,'s_x':sa,'m_s_x':msa, 'i_x':ia,'m_i_x':mia})
state1_b = getColumnState(lsiBasis, {'l_x':lb,'m_l_x':mlb,'s_x':sb,'m_s_x':msb, 'i_x':ib,'m_i_x':mib})
state2_a = getColumnState(lsiBasis, {'l_x':lb,'m_l_x':mlb,'s_x':sa,'m_s_x':msa, 'i_x':ia,'m_i_x':mia})
state2_b = getColumnState(lsiBasis, {'l_x':la,'m_l_x':mla,'s_x':sb,'m_s_x':msb, 'i_x':ib,'m_i_x':mib})
if basisChange is not None:
state1_a = basisChange @ state1_a
state1_b = basisChange @ state1_b
state2_a = basisChange @ state2_a
state2_b = basisChange @ state2_b
newpart = nuclearCoef*oalCoef*spinCoef * (np.kron(state1_a,state1_b) + p_ * np.kron(state2_a,state2_b))
state += newpart
if np.linalg.norm(state) == 0:
raise ValueError("State has zero norm!")
state /= np.linalg.norm(state)
return state
# #####################################
# Original Hamiltonian Creation
# #####################################
def create_H_HFS(hfs_basis, E_5P12_F1F2_splitting, E_HFS_5S12_F1F2_splitting, F3E, F2E, F1E, F0E):
# hfs_basis: expects a two-particle basis, so each element of the basis should
# have Fz, mF_a, J_a, i_a, and F_b, mF_b, J_b, i_b values.
# A_5P12_F1F2: The D1 line excited state hyperfine splitting (energy between 5P_{1/2},F=1 and F=2)
# F3E, F2E, F1E, F0E: the energies of the 5P_{3/2} F=3,2,1,0 manifolds. In this case, unlike in
# the fine-structure case, because there are four energy levels perturbations to the energy levels
# can't be captured in a single "A" constant, so instead I use the actual energy values
# (F3E, F2E, F1E, F0E)
H_HFS = np.zeros((len(hfs_basis),len(hfs_basis)))
#f_a,mf_a,j_a,i_a,f_b,mf_b,j_b,i_b = [0 for _ in range(8)]
name_pref = ['f','m_f','j','i']
for s1num, state1 in enumerate(hfs_basis):
# unpack the values of the quantum numbers from the state:
qNums = [0 for _ in range(8)]
for num, name_p in enumerate(name_pref):
qNums[num] = state1[name_p+"_a"]
qNums[num+4] = state1[name_p+"_b"]
f_a,mf_a,j_a,i_a,f_b,mf_b,j_b,i_b = qNums
# calculate the energies of the individual atoms and add. A_a_HFS would be the hyperfine splitting constant (oftentimes denoted A_HFS)
# for particles around nucleus A
A_a_HFS = E_5P12_F1F2_splitting if state1["l_a"] == 1 else E_HFS_5S12_F1F2_splitting
E1 = A_a_HFS/2 * (f_a*(f_a+1)-j_a*(j_a+1)-i_a*(i_a+1)) if state1["j_a"] != 3/2 else (F3E if f_a==3 else (F2E if f_a==2 else (F1E if f_a==1 else F0E)))
A_b_HFS = E_5P12_F1F2_splitting if state1["l_b"] == 1 else E_HFS_5S12_F1F2_splitting
E2 = A_b_HFS/2 * (f_b*(f_b+1)-j_b*(j_b+1)-i_b*(i_b+1)) if state1["j_b"] != 3/2 else (F3E if f_b==3 else (F2E if f_b==2 else (F1E if f_b==1 else F0E)))
# the matrix is diagonal in the given basis.
H_HFS[s1num,s1num] = E1 + E2
return H_HFS
def create_H_FS(fs_basis):
# expects a two-particle basis, so each element of the basis should
# have j_a, mj_a, l_a, s_a, and J_b, mJ_b, l_b, s_b values.
H_FS = np.zeros((len(fs_basis), len(fs_basis)))
#j_a,mj_a,l_a,s_a,j_b,mj_b,l_b,s_b = [0 for _ in range(8)]
names = ['j','m_j','l','s']
# it's diagonal in this fs_basis, so only one loop.
for s1num, state1 in enumerate(fs_basis):
qNums = [0 for _ in range(8)]
for num, name in enumerate(names):
qNums[num] = state1[name+"_a"]
for num, name in enumerate(names):
qNums[num+4] = state1[name+"_b"]
j_a,m_j_a,l_a,s_a,j_b,m_j_b,l_b,s_b = qNums
# the matrix element is A/2 (l_a . s_a + l_b . s_b), A=1
val = 0.5 * ( j_a*(j_a+1)-l_a*(l_a+1)-s_a*(s_a+1)
+ j_b*(j_b+1)-l_b*(l_b+1)-s_b*(s_b+1))
H_FS[s1num,s1num] = val
return H_FS
def get_H_BO(C3, Rv, bo_basis):
# returns the Born Oppenheimer Hamiltonian
# expects states to be a list of lists where the low level list has the values of L, Lambda, S,Sigma, and I_BO.
#H_BO = np.array([[0.0 for _ in bo_basis] for _ in bo_basis])
H_BO = np.zeros((len(bo_basis),len(bo_basis)))
lambdaKey = "|Lambda|" if "|Lambda|" in bo_basis[0] else "Lambda"
# the matrix is diagonal.
for num, state in enumerate(bo_basis):
I_BO = g if state["I_BO"]=="g" else u
pv = (-1)**(state["S"]+I_BO)
L_ = state["L"]
H_BO[num,num] = -pv*(3*state[lambdaKey]**2-L_*(L_+1))/Rv**3 * C3
return H_BO
# ##############
# Miscellaneous
# ##############
class multiplyableDict(dict):
# This class exists so that I can take a basis ref and use it in np.kron()
# to programatically get the basis ref for multi-particle systems.
def __mul__(self, other):
assert(type(other) == type(self))
newDict = multiplyableDict()
for key, value in self.items():
key_ag = key[:-2] # remove the _x from the single particle agnostic labels
newDict.update({key_ag+"_a": value})
for key, value in other.items():
key_ag = key[:-2]
newDict.update({key_ag+"_b": value})
return newDict
def getColumnState(basis, quantumNums):
# Mostly I use bases in their dictionary form where each element has all the
# relevant quantum numbers readily accessibly to identify the state. But eventually
# I need to calculate matrices which are indexed by numbers, not a list of quantum
# numbers. This function helps facilitate the relationship between these.
assert(len(basis[0])==len(quantumNums))
colState = [[0] for _ in range(len(basis))]
for num, state in enumerate(basis):
match = True
for qnum, val in quantumNums.items():
if val != state[qnum]:
match = False
if match:
colState[num][0] = 1
return colState
raise ValueError("No Match! nums were" + str(quantumNums))
def stateLabel(state):
label = ""
for key, val in state.items():
if key != 'L' and key != 'Phi' and key != 'i_a' and key != 'i_b':
label += key + ":" + str(val) + ", "
return label