-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathmain_torch.py
95 lines (71 loc) · 2.82 KB
/
main_torch.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
"""
Based on this tutorial:
https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html
"""
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision
import torchvision.transforms as transforms
import time
class Net(nn.Module):
def __init__(self):
super().__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool = nn.MaxPool2d(2, 2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.fc1 = nn.Linear(16 * 5 * 5, 1024)
self.fc2 = nn.Linear(1024, 1024)
self.fc3 = nn.Linear(1024, 84)
self.fc4 = nn.Linear(84, 10)
def forward(self, x):
x = self.pool(F.relu(self.conv1(x)))
x = self.pool(F.relu(self.conv2(x)))
x = torch.flatten(x, 1) # flatten all dimensions except batch
x = F.relu(self.fc1(x))
x = F.relu(self.fc2(x))
x = F.relu(self.fc3(x))
x = self.fc4(x)
return x
def train(device="cpu"):
batch_size = 32
transform = transforms.Compose(
[transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))])
trainset = torchvision.datasets.CIFAR10(root='data', train=True,
download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=batch_size,
shuffle=True, num_workers=2)
net = Net().to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
start = time.time()
correct, total = 0., 0.
for epoch in range(2):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data[0].to(device), data[1].to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
_, predicted = torch.max(outputs.data, 1)
running_loss += loss.item()
total += labels.size(0)
correct += (predicted == labels).sum().item()
print(f'Epoch {epoch+1}/2, loss: {running_loss/total:.3f} '
f'- accuracy: {100*correct/total:.3f}')
running_loss, correct, total = 0., 0., 0.
print('Training time %.2f sec' % (time.time()-start))
if __name__ == "__main__":
print("########## PyTorch version:", torch.__version__)
print('#######################################################')
print("########## CUDA available:", torch.cuda.is_available())
print('#######################################################')
print('########## CUDA run:')
train('cuda:0')
print('########## CPU run:')
train('cpu')
print('########## If everything worked correctly, CUDA run should be 2-3x faster')