-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtransfer.py
35 lines (27 loc) · 1.09 KB
/
transfer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
import torch
import gymnasium as gym
from PIL import Image
from core.agent import *
import hydra
from core.utils import *
import numpy as np
@hydra.main(config_path="config", config_name="transfer_config.yaml", version_base=None)
def main(args):
model_path = args.model_path
if args.use_aux == 'virtual-reward-1':
env = gym.make('core:MazEnv-v0', goal_mode=args.goal_mode, virtual_goal=1)
elif args.use_aux == 'virtual-reward-5':
env = gym.make('core:MazEnv-v0', goal_mode=args.goal_mode, virtual_goal=2)
else:
env = gym.make('core:MazEnv-v0', goal_mode=args.goal_mode)
for i in range(args.runs):
model = Agent(env=env, args=args)
model.target_net.load_state_dict(torch.load(model_path))
model.policy_net.load_state_dict(torch.load(model_path))
# The first 8 params are weights and biases of representation network
for i, param in enumerate(model.policy_net.parameters()):
if i < 8:
param.requires_grad = False
model.train()
if __name__ == "__main__":
main()