-
Notifications
You must be signed in to change notification settings - Fork 12
/
Copy pathtest_embeddings.py
156 lines (110 loc) · 3.7 KB
/
test_embeddings.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
import gensim
import sys
import os
import codecs
import json
from preprocess import preprocess
import nltk.data
import multiprocessing
tokenizer = nltk.data.load('tokenizers/punkt/english.pickle')
file_path = "../Dataset/all-parsed-papers-category.txt"
dict_paras = {}
dict_sentences= {}
def init():
train = codecs.open(file_path,'r','utf-8')
papers=[]
# model_s_DM = gensim.models.doc2vec.Doc2Vec.load('Models/sentences_DM.doc2vec')
# model_s_DBOW = gensim.models.doc2vec.Doc2Vec.load('Models/sentences_DBOW.doc2vec')
# model_s_DBOW = gensim.models.doc2vec.Doc2Vec.load('Models/sentences_DBOW.doc2vec')
# model_s_DBOW = gensim.models.doc2vec.Doc2Vec.load('Models/sentences_DBOW.doc2vec')
for line in train:
line = line.replace("###FORMULA###","||FORMULA||")
line = line.replace("###TABLE###","||TABLE||")
line = line.replace("###FIGURE###","||FIGURE||")
map=line.split('\t')
paper=dict()
paper['id']=map[0]
paper['name']=map[1]
try:
paper['info']=json.loads(map[2])
except:
continue
paper['sum']=map[3]
if (len(paper['sum'])>=10):
papers.append(paper)
print("Paper ", len(papers))
for paper in papers:
print(paper['id'])
paper['sum']=paper['sum'].encode('utf-8')
paper_data = ""
for key in paper['info']:
paper_data_abs=""
for item in paper['info'][key]:
if isinstance(item,str):
paper_data+=item+" "
paper_data_abs+=item+" "
elif isinstance(item,bytes):
paper_data+=item+" "
paper_data_abs+=item+" "
elif isinstance(item,dict):
for innerKey in item:
for innerItem in item[innerKey]:
if (isinstance(innerItem,str)):
paper_data+=innerItem+" "
paper_data_abs+=innerItem+" "
elif (isinstance(innerItem,bytes)):
paper_data+=innerItem+" "
paper_data_abs+=innerItem+" "
elif isinstance(innerItem,dict):
for in_innerKey in innerItem:
for in_innerItem in innerItem[in_innerKey]:
if (isinstance(in_innerItem,str)):
paper_data+=in_innerItem+" "
paper_data_abs+=in_innerItem+" "
elif (isinstance(in_innerItem,bytes)):
paper_data+=in_innerItem+" "
paper_data_abs+=in_innerItem+" "
para_label = str(paper['id']) + '_' + str(key)
if paper['id'] not in dict_paras:
dict_paras[paper['id']] = []
dict_paras[paper['id']].append(para_label)
lines = tokenizer.tokenize(paper_data)
for uid, line in enumerate(lines):
sentence_label = str(paper['id']) + '_' + str(uid)
if paper['id'] not in dict_sentences:
dict_sentences[paper['id']] = []
dict_sentences[paper['id']].append(sentence_label)
return papers
print("Initialization done")
def get_embedding(article_fname, para = True, algo = "DM"):
paper_vector = []
if para == False:
if algo == "DM":
model = gensim.models.doc2vec.Doc2Vec.load('Models_New/sentences_DM.doc2vec')
elif algo == "DBOW":
model = gensim.models.doc2vec.Doc2Vec.load('Models_New/sentences_DBOW.doc2vec')
else:
print("error")
return []
sentence_labels = dict_sentences[article_fname]
for label in sentence_labels:
origin = model.docvecs[label]
paper_vector.append(origin)
elif para == True:
if algo == "DM":
model = gensim.models.doc2vec.Doc2Vec.load('Models_New/paragraph_DM.doc2vec')
elif algo == "DBOW":
model = gensim.models.doc2vec.Doc2Vec.load('Models_New/paragraph_DBOW.doc2vec')
else:
print("error")
return []
para_labels = dict_paras[article_fname]
for label in para_labels:
origin = model.docvecs[label]
paper_vector.append(origin)
return paper_vector
init()
# print(len(dict_paras))
# print(dict_paras['1603.04918.txt'])
# print(len(get_embedding('1603.04918.txt')))
# print(get_embedding('1603.04918.txt'))