Skip to content

Commit

Permalink
Add dominance algorithm implementation
Browse files Browse the repository at this point in the history
Implements "A simple, fast dominance algorithm", to find the immediate
dominators of all nodes in a graph.

- https://www.cs.tufts.edu/comp/150FP/archive/keith-cooper/dom14.pdf

This will be used for a new experimental bundler package to be added.
This adds the empty package.

Test Plan: Run `yarn test` to execute unit-tests for the implementation

Pull Request: #326
  • Loading branch information
yamadapc committed Feb 5, 2025
1 parent a442650 commit 95e0798
Show file tree
Hide file tree
Showing 4 changed files with 318 additions and 0 deletions.
9 changes: 9 additions & 0 deletions packages/bundlers/bundler-experimental/.nyc.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,9 @@
{
"include": ["src/**/*.ts"],
"watermarks": {
"lines": [80, 95],
"functions": [80, 95],
"branches": [80, 95],
"statements": [80, 95]
}
}
33 changes: 33 additions & 0 deletions packages/bundlers/bundler-experimental/package.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
{
"name": "@atlaspack/bundler-experimental",
"version": "2.12.0",
"license": "(MIT OR Apache-2.0)",
"publishConfig": {
"access": "public"
},
"repository": {
"type": "git",
"url": "https://github.com/atlassian-labs/atlaspack.git"
},
"main": "lib/index.js",
"source": "src/index.js",
"engines": {
"node": ">= 16.0.0",
"parcel": "^2.12.0"
},
"dependencies": {
"@atlaspack/core": "2.12.0",
"@atlaspack/diagnostic": "2.12.0",
"@atlaspack/feature-flags": "2.12.0",
"@atlaspack/graph": "3.2.0",
"@atlaspack/logger": "2.12.0",
"@atlaspack/plugin": "2.12.0",
"@atlaspack/rust": "2.12.0",
"@atlaspack/types": "2.12.0",
"@atlaspack/utils": "2.12.0",
"nullthrows": "^1.1.1"
},
"devDependencies": {
"@atlaspack/fs": "2.12.0"
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,150 @@
// @flow strict-local

import {type NodeId, Graph, ALL_EDGE_TYPES} from '@atlaspack/graph';

/**
* Implements "A simple, fast dominance algorithm", to find the immediate
* dominators of all nodes in a graph.
*
* Returns a map of node IDs to their immediate dominator's node ID.
* This map is represented by an array where the index is the node ID and the
* value is its dominator.
*
* For example, given a node `3`, `dominators[3]` is the immediate dominator
* of node 3.
*
* - https://www.cs.tufts.edu/comp/150FP/archive/keith-cooper/dom14.pdf
*/
export function simpleFastDominance<T>(graph: Graph<T, number>): NodeId[] {
const rootNodeId = graph.rootNodeId;
if (rootNodeId == null) {
throw new Error('Graph must have a root node');
}

const postOrder = getGraphPostOrder(graph);
const reversedPostOrder = postOrder.slice().reverse();
const dominators = Array(graph.nodes.length).fill(null);

const postOrderIndexes = Array(graph.nodes.length).fill(null);
for (let i = 0; i < postOrder.length; i++) {
postOrderIndexes[postOrder[i]] = i;
}

dominators[rootNodeId] = graph.rootNodeId;

let changed = true;

while (changed) {
changed = false;

for (let node of reversedPostOrder) {
if (node === graph.rootNodeId) continue;

let newImmediateDominator = null;
graph.forEachNodeIdConnectedTo(
node,
(predecessor) => {
if (newImmediateDominator == null) {
newImmediateDominator = predecessor;
} else {
if (dominators[predecessor] == null) {
return;
}

newImmediateDominator = intersect(
postOrderIndexes,
dominators,
predecessor,
newImmediateDominator,
);
}
},
ALL_EDGE_TYPES,
);

if (dominators[node] !== newImmediateDominator) {
dominators[node] = newImmediateDominator;
changed = true;
}
}
}

return dominators;
}

/**
* Return the post-order of the graph.
*/
export function getGraphPostOrder<T>(
graph: Graph<T, number>,
type: number = 1,
): NodeId[] {
const postOrder = [];
graph.traverse(
{
exit: (node) => {
postOrder.push(node);
},
},
graph.rootNodeId,
type,
);
return postOrder;
}

/**
* From "A Simple, Fast Dominance Algorithm"
* Keith D. Cooper, Timothy J. Harvey, and Ken Kennedy:
*
* > The intersection routine appears at the bottom of the figure.
* > It implements a “two-finger” algorithm – one can imagine a finger pointing
* > to each dominator set, each finger moving independently as the comparisons
* > dictate. In this case, the comparisons are on postorder numbers; for each
* > intersection, we start the two fingers at the ends of the two sets, and,
* > until the fingers point to the same postorder number, we move the finger
* > pointing to the smaller number back one element. Remember that nodes higher
* > in the dominator tree have higher postorder numbers, which is why intersect
* > moves the finger whose value is less than the other finger’s. When the two
* > fingers point at the same element, intersect returns that element. The set
* > resulting from the intersection begins with the returned element and chains
* > its way up the doms array to the entry node.
*
* `postOrder` is the post-order node list of the graph.
*
* `dominators` is the current immediate dominator state for node in the graph.
*
* This is coupled with the fact node ids are indexes into an array. It is a map
* of NodeId -> NodeId, where the value at index `i` is the immediate dominator
* of the node `i`.
*
* `predecessor` is one predecessor node id of the node we're currently
* computing the immediate dominator for.
*
* `newImmediateDominator` is current best immediate dominator candidate for the
* node we're computing the immediate dominator for.
*
* The algorithm is intersecting the dominator sets of the two predecessors and
* returning dominator node with the highest post-order number by walking up
* the dominator tree until the two sets intersect.
*
* The node with the highest post-order index is the immediate dominator, as
* it is the closest to the node we're computing for.
*/
export function intersect(
postOrderIndexes: number[],
dominators: (NodeId | null)[],
predecessor: NodeId,
newImmediateDominator: NodeId,
): NodeId {
let n1: number = predecessor;
let n2: number = newImmediateDominator;
while (n1 !== n2) {
while (postOrderIndexes[n1] < postOrderIndexes[n2]) {
n1 = Number(dominators[n1]);
}
while (postOrderIndexes[n2] < postOrderIndexes[n1]) {
n2 = Number(dominators[n2]);
}
}
return n1;
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,126 @@
// @flow strict-local

import assert from 'assert';
import {ContentGraph} from '@atlaspack/graph';
import {simpleFastDominance} from '../../../src/DominatorBundler/findAssetDominators/simpleFastDominance';

const baseGraph = () => {
const inputGraph = new ContentGraph();
const root = inputGraph.addNodeByContentKey('root', 'root');
inputGraph.setRootNodeId(root);
return {inputGraph, root};
};

describe('simpleFastDominance', () => {
it('it works on a linear graph', () => {
// digraph g {
// root -> a -> b -> c -> d
// }
const {inputGraph, root} = baseGraph();
inputGraph.setRootNodeId(root);

const a = inputGraph.addNodeByContentKey('a', 'a');
const b = inputGraph.addNodeByContentKey('b', 'b');
const c = inputGraph.addNodeByContentKey('c', 'c');
const d = inputGraph.addNodeByContentKey('d', 'd');

inputGraph.addEdge(root, a);
inputGraph.addEdge(a, b);
inputGraph.addEdge(b, c);
inputGraph.addEdge(c, d);

const dominators = simpleFastDominance(inputGraph);
assert.equal(dominators[root], root);
assert.equal(dominators[a], root);
assert.equal(dominators[b], a);
assert.equal(dominators[c], b);
assert.equal(dominators[d], c);
});

it('it works on a tree graph', () => {
// digraph g {
// root -> a;
// root -> b;
// a -> c;
// a -> d;
// b -> e;
// }
const {inputGraph, root} = baseGraph();

const a = inputGraph.addNodeByContentKey('a', 'a');
const b = inputGraph.addNodeByContentKey('b', 'b');
const c = inputGraph.addNodeByContentKey('c', 'c');
const d = inputGraph.addNodeByContentKey('d', 'd');
const e = inputGraph.addNodeByContentKey('e', 'e');

inputGraph.addEdge(root, a);
inputGraph.addEdge(root, b);
inputGraph.addEdge(a, c);
inputGraph.addEdge(a, d);
inputGraph.addEdge(b, e);

const dominators = simpleFastDominance(inputGraph);
assert.equal(dominators[root], root);
assert.equal(dominators[a], root);
assert.equal(dominators[b], root);
assert.equal(dominators[c], a);
assert.equal(dominators[d], a);
assert.equal(dominators[e], b);
});

it('it works on simple graph with multiple paths', () => {
// digraph g {
// root -> a;
// a -> b;
// b -> c;
// a -> c;
// }
const {inputGraph, root} = baseGraph();

const a = inputGraph.addNodeByContentKey('a', 'a');
const b = inputGraph.addNodeByContentKey('b', 'b');
const c = inputGraph.addNodeByContentKey('c', 'c');

inputGraph.addEdge(root, a);
inputGraph.addEdge(a, b);
inputGraph.addEdge(b, c);
inputGraph.addEdge(a, c);

const dominators = simpleFastDominance(inputGraph);
assert.equal(dominators[root], root);
assert.equal(dominators[a], root);
assert.equal(dominators[b], a);
assert.equal(dominators[c], a);
});

it('it works on a graph with multiple paths to nodes', () => {
// digraph g {
// root -> a;
// root -> b;
// a -> c;
// a -> d;
// b -> d;
// d -> c;
// }
const {inputGraph, root} = baseGraph();

const a = inputGraph.addNodeByContentKey('a', 'a');
const b = inputGraph.addNodeByContentKey('b', 'b');
const c = inputGraph.addNodeByContentKey('c', 'c');
const d = inputGraph.addNodeByContentKey('d', 'd');

inputGraph.addEdge(root, a);
inputGraph.addEdge(root, b);
inputGraph.addEdge(a, c);
inputGraph.addEdge(a, d);
inputGraph.addEdge(b, d);
inputGraph.addEdge(d, c);

const dominators = simpleFastDominance(inputGraph);
assert.equal(dominators[root], root);
assert.equal(dominators[a], root);
assert.equal(dominators[b], root);
assert.equal(dominators[c], root);
assert.equal(dominators[d], root);
});
});

0 comments on commit 95e0798

Please sign in to comment.