You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
For the following code cell in section "5. Fine-tune the pre-trained model on the labelled weather data"
print('Training of Model:') model_ft = train_model(model_ft, criterion, optimizer_ft,model_checkpoint=0,num_epochs=epochs)
I get the following error:
Cell In[12], line 35, in train_model(model, criterion, optimizer, model_checkpoint, early_stop, num_epochs)
33 _, preds = torch.max(output, 1)
34 # calculate the batch loss
---> 35 loss = criterion(output, target)
36 # backward pass: compute gradient of the loss with respect to model parameters
37 loss.backward()
File ~/.conda/envs/cv/lib/python3.9/site-packages/torch/nn/modules/module.py:1194, in Module._call_impl(self, *input, **kwargs)
1190 # If we don't have any hooks, we want to skip the rest of the logic in
1191 # this function, and just call forward.
1192 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1193 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1194 return forward_call(*input, **kwargs)
1195 # Do not call functions when jit is used
1196 full_backward_hooks, non_full_backward_hooks = [], []
Link to the notebook
Weather Data Image Classification notebook
What aspects of the notebook do not work?
For the following code cell in section "5. Fine-tune the pre-trained model on the labelled weather data"
print('Training of Model:') model_ft = train_model(model_ft, criterion, optimizer_ft,model_checkpoint=0,num_epochs=epochs)
I get the following error:
`---------------------------------------------------------------------------
IndexError Traceback (most recent call last)
Cell In[26], line 2
1 print('Training of Model:')
----> 2 model_ft = train_model(model_ft, criterion, optimizer_ft,model_checkpoint=0,num_epochs=epochs)
Cell In[12], line 35, in train_model(model, criterion, optimizer, model_checkpoint, early_stop, num_epochs)
33 _, preds = torch.max(output, 1)
34 # calculate the batch loss
---> 35 loss = criterion(output, target)
36 # backward pass: compute gradient of the loss with respect to model parameters
37 loss.backward()
File ~/.conda/envs/cv/lib/python3.9/site-packages/torch/nn/modules/module.py:1194, in Module._call_impl(self, *input, **kwargs)
1190 # If we don't have any hooks, we want to skip the rest of the logic in
1191 # this function, and just call forward.
1192 if not (self._backward_hooks or self._forward_hooks or self._forward_pre_hooks or _global_backward_hooks
1193 or _global_forward_hooks or _global_forward_pre_hooks):
-> 1194 return forward_call(*input, **kwargs)
1195 # Do not call functions when jit is used
1196 full_backward_hooks, non_full_backward_hooks = [], []
File ~/.conda/envs/cv/lib/python3.9/site-packages/torch/nn/modules/loss.py:1174, in CrossEntropyLoss.forward(self, input, target)
1173 def forward(self, input: Tensor, target: Tensor) -> Tensor:
-> 1174 return F.cross_entropy(input, target, weight=self.weight,
1175 ignore_index=self.ignore_index, reduction=self.reduction,
1176 label_smoothing=self.label_smoothing)
File ~/.conda/envs/cv/lib/python3.9/site-packages/torch/nn/functional.py:3026, in cross_entropy(input, target, weight, size_average, ignore_index, reduce, reduction, label_smoothing)
3024 if size_average is not None or reduce is not None:
3025 reduction = _Reduction.legacy_get_string(size_average, reduce)
-> 3026 return torch._C._nn.cross_entropy_loss(input, target, weight, _Reduction.get_enum(reduction), ignore_index, label_smoothing)
IndexError: Target 4 is out of bounds.`
The text was updated successfully, but these errors were encountered: